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Abstract
Efficient data dissemination from a single source

node to multiple receiving nodes on the Internet is cru-
cial for many applications such as P2P streaming. Ex-
isting data dissemination schemes are typically accom-
plished using the overlay multicast trees. These over-
lay multicast trees, however, do not achieve the full
bandwidth capacity since the leaf nodes do not con-
tribute their bandwidth to the system. On the other
hand, all the nodes in a properly constructed topology
can contribute their bandwidth, resulting in high over-
all system throughput. In this paper, we define the
notion of throughput efficiency to measure the perfor-
mance of different data dissemination schemes from a
single source node to multiple destination nodes. Us-
ing the proposed throughput efficiency, we propose an
algorithm for constructing an overlay structured forest
that enables high-bandwidth data dissemination in a
network with roughly homogeneous capacity. The pro-
posed structured forest and the associated data dissem-
ination algorithm are designed to achieve the following:
(1) end-to-end delay from the source node to any node
is small (O((logN)2)), (2) the out-degree of any node
is small (O(C)), and (3) bandwidth usages of all the
nodes are optimal.

1 Introduction
Many Internet applications such as video multicasts

rely on the network topology and protocols for efficient
data dissemination from a single source node to a large
number of destination nodes. A well-known example of
data dissemination on the Internet is the IP multicast
[1]. The primary motivations of IP multicast are (a)
to avoid wasted bandwidth incurred in point-to-point
data transfer and (b) to scale with the number of re-
ceivers. IP multicast, however is not widely deployed
due to the compatibility issues among the autonomous
systems (AS) in the Internet. This has led to a number
of overlay multicast systems [2] where end hosts them-
selves form a multicast tree for delivering data. The ad-

vantage of overlay multicast is that physical routers do
not need to support complex multicast operations. In-
stead, packet routing and forwarding are logically done
at the application layer, which lead to easy deployment
across different AS(es). However, the overlay multicast
techniques are sup-optimal since identical packets may
travel on the same physical links. In addition, overlay
multicast is not optimal in term of throughput since
the leaf nodes do not contribute their bandwidth to
the system.

Traditional data dissemination algorithms place
bandwith constraints on individual links. This model
does not reflect modern network such as P2P or wire-
less network, where there are limited upload bandwidth
but with little restriction on the download bandwidth.
In this paper, we study the data dissemination prob-
lem in which, bandwidth constraint is associated with
the node’s upload bandwidth and no constraint on the
node’s download bandwidth. For example, in a lightly
loaded P2P network [3][4], the bandwidth constraint of
a DSL subscriber is its upload physical bandwidth, e.g.
250 kbps. A peer may decide to have multiple connec-
tions to other peers, but the sum of all sending rates
cannot exceed the upload physical bandwidth. That
said, we would like to construct a network topology
and the associated data dissemination algorithm to re-
sult in (1) end-to-end delay from the source node to
any node is small (O(log(N))2), (2) the out-degree of
any node is small (O(C)), and (3) bandwidth usages of
all the nodes are optimal.

The rest of the paper is organized as follows. in Sec-
tion 2, we define the notion of throughput efficiency.
In Section 3, we will show how to construct structured
mesh that maximizes throughput efficiency, and at the
same time, has small delay and out-degree. In Sec-
tion 4, we show simulation results for a number of sce-
narios, demonstrating the advantages of our proposed
structured mesh. In Section 5, we list a few represen-
tative work similar to ours. Finally, we summarize our



contributions and suggest future direction in Section 6.

2 Throughput Efficiency
To measure the performance of different data dis-

semination schemes, we define the following through-
put efficiency:

Definition 1: Throughput efficiency is defined as

E
∆=

∑i=N
i=0 Si

min(
∑i=N

i=0 Ci, NC0)
(1)

where 0 denotes the source node, i = 1...N denote
N destination nodes, Si and Ci are the actual, use-
ful sending rate and the sending capacity of node i,
respectively.

The useful sending rate Si means that all the data
sent directly from node i to node j are completely dis-
joint with the data received at node j from all other
nodes k �= i. Hence, the actual sending rate Si is dic-
tated by the topology, the algorithms for data dissemi-
nation, and the rate partition at each node as exhibited
in the previous ad-hoc algorithms. The numerator in
the definition 1 is the total actual sending rate of all
the nodes, while the denominator is the minimum of
the two quantities: (a) total maximum sending capac-
ity of all the nodes and (b) the maximum receiving
capacity.

Proposition 1: E ≤ 1 for any data dissemination
topology and algorithm.

Proof:
Case 1: Assume min(

∑i=N
i=0 Ci, NC0) =

∑ i=N
i=0∑ i=N

i=0 Ci
,

then since Ci ≥ Si, we have E =
∑ i=N

i=0 Si∑ i=N
i=0 Ci

≤ 1.

Case 2: Assume min(
∑i=N

i=0 Ci, NC0) = NC0, then

E =
∑ i=N

i=0 Si

NC0
. Now, we observe the following. A desti-

nation node cannot receive the information at a rate
faster than the information rate being injected into
the network. Since the source node injects the max-
imum data rate of C0 into the topology, maximum
total receiving rate of useful data for all N destina-
tion nodes is NC0 bps. Since the total sending rate
E =

∑i=N
i=0 Si and the total receiving rate must equal

to each other, and therefore is less than or equal to the
maximum total receiving rate of all the nodes NC0.
Hence, E =

∑ i=N
i=0 Si

NC0
≤ 1. �

Clearly, throughput efficiency relates directly to the
average receiving throughput of all the nodes. Effi-
ciency of 1 means all nodes are sending data at their
capacities, and therefore results in highest efficiency.
Since the total sending capacity of all the nodes may
be larger than the allowable receiving rate as this rate
is dictated by the injected data rate by the source, the
min term in the denominator ensures that the through-
put efficiency is not reduced for a network topology
with large capacity but having small injected data rate.
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Figure 1: Illustration of balanced mesh construction.

3 Solutions
3.1 Balanced Mesh

We now proceed to consider a special scenario in
which, all the nodes have the same upload bandwidth
C. Furthermore, the nodes must be able to form a
balanced mesh of degree b. We seek to build a data
dissemination topology that results in large throughput
efficiency, small delay, and the out-degree of each node
is no more than b. We construct such a topology as a
balanced mesh. A balanced mesh is first constructed
as a balanced tree with a source node at the root. The
leaf nodes of the tree are then connected together, and
also connected up to their ancestors in a systematic
manner to result in an efficiency data dissemination
mesh. Figure 1 show an example of a balanced mesh
with b = 2.

In this example, the source node partitions the data
into two distinct groups and sends them down onto the
left and right trunk of the tree. Thus, all the leaf nodes
under the same trunk receive identical data. In order
for the leaf nodes to receive the complete data, each leaf
node is to connect to one other leaf node in the other
trunk. For example, Figure 1 shows pairs of nodes 7
and 11, 9 and 12, 9 and 13, 10 and 14 connecting to-
gether. As a result, all the leaf nodes now receive the
complete data. However, the internal nodes, e.g. nodes
3 and 4 in the left trunk are currently not receiving the
data from the right trunk. To overcome this problem,
the leaf nodes can forward the data received from the
other trunk to their ancestors. As constructed so far,
each leaf node currently sends data at only half of its
capacity since it is connected to only one other leaf
node. To fully utilize the bandwidth, each leaf node
first forwards the data received from the other trunk to
its parent. If its parent already receives the data from
its other sibling, the leaf node forward the data to its
grandparent. The process continues until all the nodes
in the mesh receive the complete data. For example,
node 7 forwards data from the right trunk to its par-
ent (node 3). Since node 3 already receives that data
from node 7, node 8 forwards its data from the right
trunk to its grandparent (node 1). Node 9 forwards the
data to its parent (node 4) while node 10 does not for-
ward any data to its ancestor since there is no node in
need to data in its trunk. We now present the general



algorithm for constructing a b-balanced mesh. The al-
gorithm ensures that all (a) the nodes in the balanced
mesh receive the complete data, (b) no node has out-
degree of more than b, number of hops from the source
node to the destination nodes is O(logb N) where N is
total number of nodes, and (c) throughput efficiency
E = 1.

To describe the algorithm, we first label the nodes
as shown in Figure 1. In particular, nodes are labeled
from low to high in a breadth-first manner. Within a
level, the node labels increase from left to right.

Algorithm for constructing the balanced mesh is as
follows.

1. Construct a balanced tree with each internal node
having out-degree of b with the source node being
the root.

2. Assuming the tree has i levels, each leaf node j in
the leftmost trunk is then connected to b−1 other
leaf nodes in each of different b−1 trunks. In par-
ticular, node j in the leftmost trunk is connected
to nodes k = j + bi−1m where m = 1, 2, ...b − 1.

3. Each leaf node within a trunk from left to right ex-
cept the rightmost node with respect to a partic-
ular parent, is connected back to its parent. This
rightmost leaf node is connected to the grandpar-
ent. By this construction, each parent node will
have b incoming connections, 1 connections from
its parent and b − 1 connections from b − 1 of its
children. The grandparent will also have b incom-
ing connections, 1 connections from its parent and
b − 1 connections from b − 1 of its grandparents.
The reason for this is that there is exactly one
grandchild from each of b − 1 parents that con-
nects to the grandparent. Next, the grandchild
of the rightmost parent is then connected to its
grand-grand parent. The process continues until
all the internal nodes or ancestors have exactly
b incoming connections. Note that by construc-
tion, there will be exactly one rightmost leaf node
within each trunk, e.g. nodes 10 and 14 in Figure
1, that will not connect to any ancestor.

Given the balanced mesh, the data dissemination algo-
rithm is as follows.

1. The source node partitions the data into b distinct
groups and send them down onto b trunks of the
mesh at the rate of C/b bps per trunk. Each in-
ternal node in turn broadcasts the data down to
its children also at the rate of C/b bps per link.

2. Since each leaf node is connected to b−1 other leaf
nodes in other trunks, a leaf node can forward its
data to b − 1 other leaf nodes in other trunks at

the rate of C/b bps . As a result, each leaf node
receive the complete data from b− 1 different leaf
nodes and its parent.

3. By the construction, a parent is connected to b −
1 children, and therefore, b − 1 children forward
b − 1 different partitions to their parents at the
rate of C/b bps. This is possible because all the
children, i.e. leaf nodes have the complete data.
As a result, a parent node is able to receive the
complete data. Similarly, all the ancestry nodes
can receive the complete data since they all have b
incoming connections from the leaf node with each
leaf node forward a different data partitions.

Proposition 2: Out-degree for each node is at most b.
Proof: By construction, each internal node has ex-

actly4 b out-connections to b children. With the ex-
ception of the rightmost leaf nodes, each leaf node has
b− 1 out-connections to other leaf nodes, and one out-
connection to its ancestor (e.g. parent, grandparent,
...). Thus all nodes have out-degree of b, except the b
rightmost leaf nodes which have out-degree of b − 1.�

Proposition 3: The maximum node delay D is
logb((b− 1)N + b) + 1 where N is the number of desti-
nation nodes.

Proof: We omit the full proof, and note that the
result can be obtained using geometric sum. �

Proposition 4: The throughput efficiency E = 1.
Proof: By construction, within a trunk, there is ex-

actly one rightmost leaf node which does not forward
its data to any of its ancestors. This rightmost leaf
node, however, forwards its data to b − 1 leaf nodes
at the rate of C/b bps. The rest of the “fully active”
nodes within each trunk forward data at the rate of C
bps. Since there are b trunks in a b-balanced mesh,
the total sending rate of the entire mesh equals to
sum of the sending rates of the source node, N − b
“fully active” nodes, and b rightmost leaf nodes, i.e.
∑i=N

i=0 Si = C+(N−b)C+b(b−1)C/b = NC bps. The
denominator of E equals to min((N +1)C,NC) = NC.
Hence E = NC/NC = 1. �
3.2 Cascaded Balanced Mesh

In the previous case, the total number of nodes must
be of the form (bi − 1)/(b − 1) where i, b ∈ 0, 1, .... We
now show an algorithm for constructing a mesh with
arbitrary number of nodes, and still preserve desired
properties. The main idea of the algorithm is to cas-
cade a series of the balanced meshs in order to accom-
modate arbitrary number of nodes.

We note that there is exactly C bps of the remaining
capacity after constructing a b-balanced mesh. In ad-
dition, there are b rightmost leaf nodes, each with only
b − 1 out-connections. Hence, we can construct a new
balanced mesh with the new root connected to b right-
most leaf nodes of the previous balanced mesh. The
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Figure 2: A cascaded 2-balanced mesh.

data is then sent from these nodes to the new root at
the rate of C/b bps each, or a total rate of C bps. The
new root then disseminates data to all the destination
nodes in the same manner as that of the previous bal-
anced mesh. The number of balanced meshs depends
on the number of nodes in the mesh. Figure 2 shows an
example of cascaded 2-balanced mesh consisting of 23
nodes. As seen, the remaining two nodes 10 and 14 of
the previous balanced mesh have spare capacity to send
their data to the new root node. Similarly, the nodes
19 and 21 send the data to the final node 22, the root
of a new mesh without any children. The general algo-
rithm for construction of a cascaded b-balanced mesh
consisting of N destination nodes is as follows.

1. Construct a b-balanced mesh with the depth i =
�log((b − 1)N + b� − 1. This step constructs the
deepest b-balanced mesh without exceeding the
number of nodes. If there exists a previous b-
balanced mesh, connect the b rightmost leaf nodes
with extra bandwidth to the root of a newly cre-
ated balanced mesh.

2. Set N = N−(bi+1−1)/(b−1). This is the number
of remaining nodes.

3. If N = 0, stop. Otherwise, go back to step 1.

Since the construction of the cascaded balanced mesh is
based on that of a balanced mesh, the properties of the
cascaded balanced mesh are similar. In particular, the
out-degree and throughput efficiency are exactly iden-
tical, i.e. out-degree is limited to b and the throughput
efficiency is exactly 1.

Proposition 5: The delay in a topology of cascaded
b-balanced mesh is O((logbN)2).

Proof (outline): At each iteration of the algorithm,
we construct the deepest b-balanced mesh without ex-
ceeding the number of nodes. Therefore, the remain-
ing number of nodes after constructing a b-balanced

mesh of maximum depth i cannot be greater than
bi+1. Otherwise, we can construct a b-balanced mesh of
depth i + 1 which contradicts the maximum possible i.
Next, since the number of nodes in a b-balanced mesh
of depth i is (bi+1 − 1)/(b − 1), the maximum num-
ber of meshes of depth i that can cover the remaining
nodes without exceeding the number of possible nodes
is therefore bi+1(b − 1)/(bi+1 − 1) ≤ b. Therefore, we
can construct at most b meshes of depth i before mov-
ing to the meshes of depth j < i. Hence, after the
algorithm terminates, we have at most bi meshes with
i being the depth of the first mesh. Since each mesh
has depth of O(i),the total delay is therefore O(i2), or
equivalently O((logbN)2). �

4 Simulation Results
We now present the simulation results for our pro-

posed structured mesh. Figure 3(a) shows the through-
put efficiency for our structured mesh vs maximum
variation on capacity v. In particular, node capacities
are uniformly generated between C(1+v) and C(1−v)
where C is the mean capacity. As seen, the efficiency
reduces as the capacity variation increases since an in-
ternal node may have small capacity which creates a
bandwidth bottleneck for all its children. However,
even when v = 0.25, the throughput efficiency are still
0.8%. Similar results are obtained when node capacity
is normally distributed.

Figure 3(b) shows the throughput efficiency vs the
outdegree for three different schemes: traditional mul-
ticast tree, unoptimized structured mesh, and opti-
mized structured mesh. For optimized structured
mesh, nodes with lower capacities are moved to the
leaves to reduce bottleneck for other nodes. As seen,
throughput efficiency is 98% for optimized structured
mesh, 92% for unoptimized one. For the multicast tree,
the throughput efficiency is small and decreases as the
outdegree increases since the number of inactive nodes
(leaf nodes) increases in this topology.

5 Related Work
We list a few representative work on data dissemi-

nation on the Internet. Similar to our approach, Byers
and et.al. [5] propose to partition the data and make
use of the peers to increase the throughput of the sys-
tem. In this approach, each node randomly sends dif-
ferent partitions on different links. Data reconciliation
techniques [6] are then used to reduce the data redun-
dancy sent between the nodes. To address the transient
and asynchrony issues of node joining and leaving the
network, the paper advocates Forward Error Correc-
tion (FEC) approach in which a node can successfully
recover the entire file using a fraction of the received
packets. Similar work has also been done in [7]. In this
work, the goal is to distribute data to a set of nodes in
an overlay multicast tree in such a way to result in the
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Figure 3: (a) Efficiency vs variation; (b) Efficiency vs out-
degree for different data dissemination schemes.

approximate disjoint data set at these nodes. These
individual nodes then can establish concurrent connec-
tions to other nodes in order to increase the download
speed. The data reconciliation techniques similar to
[5] are used to reduce overlapped data. Both of the
aforementioned work focus on protocols and techniques
for dynamically exchanging information between the
nodes. On the other hand, our work focus on construct-
ing the good topology with emphasis on throughput
efficiency, node out-degree, node delay, and bandwidth
fairness. In addition, unlike the randomized file par-
tition approaches in [5] and [7], our file partition al-
gorithm is simple, deterministic, and uses only a small
number of partitions. Therefore, no data reconciliation
is needed. Authors in [8] also propose to use multiple
overlay multicast trees to stream multiple descriptions
of the video to the clients. Each multicast tree con-
tains a description of the video. When a large number
of descriptions are received, the higher quality of video
can be achieved. Unlike ours, the focus of this pa-
per is on reliability and video quality. Most similar to
our work is SplitStream [9]. In [9], the authors con-
struct multiple multicast trees with the property that
an internal node of one tree has to be the leaf node
in the others for reliability issues. Data are then parti-
tioned and sends on to different multicast trees. Unlike
our work, SplitStream relies Scribe [10] and Pastry [11]
infrastructure for tree construction without regarding
for the constraints on out-degree and capacity of each
node.

6 Conclusions and Future Work
We conclude our paper with the highlights of our

contributions. First, we define the notion of through-
put efficiency to measure the performance of different

data dissemination topology and algorithms. Second,
we devise algorithms for constructing a topology that
outperform traditional multicast tree significantly, and
at the same time, achieve the following properties: (1)
end-to-end delay from the source node to any node
is small (O((logN)2)), (2) the out-degree of any node
is small (O(C)), and (3) bandwidth usages of all the
nodes are optimal. In the current proposed structured
mesh, a node enters or leaves may affect a large number
of nodes as the mesh may have to be rebuilt. This is
unsuitable in a dynamic environment. We plan to in-
vestigate other topologies that enable node joining and
leaving incrementally while preserving high throughput
efficiency, small delay and outdegree. We also plan to
extend our work to network with heterogeneous node
capacity by first clustering of nodes with the same ca-
pacities and applying the proposed techniques to each
cluster.
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