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Abstract—Consider a channel whose the input alphabet set
X = {G1, G2, . . . , G } contains  discrete symbols modeled as a
discrete random variable - having a probability mass function
p(x) = [?(G1), ?(G2), . . . , ?(G )] and the received signal . being
a continuous random variable. . is a distorted version of -

caused by a channel distortion, characterized by the conditional
densities ?(H |G8) = q8 (H), 8 = 1, 2, . . . ,  . To recover - , a
quantizer & is used to quantize . back to a discrete output
Z = {I1, I2, . . . , I# } corresponding to a random variable / with a
probability mass function p(z) = [?(I1), ?(I2), . . . , ?(I# )] such
that the mutual information � (-; /) is maximized subject to
an arbitrary constraint on p(z). Formally, we are interested in
designing an optimal quantizer &∗ that maximizes V� (-; /) −
� (/) where V is a positive number that controls the trade-off
between maximizing � (-; /) and minimizing an arbitrary cost
function � (/). Let p(x|H) = [?(G1 |H), ?(G2 |H), . . . , ?(G |H)] be
the posterior distribution of - for a given value of H, we show
that for any arbitrary cost function � (.), the optimal quantizer
&∗ separates the vectors p(x|H) into convex regions. Using this
result, a method is proposed to determine an upper bound on
the number of thresholds (decision variables on H) which is
used to speed up the algorithm for finding an optimal quantizer.
Numerical results are presented to validate the findings.

Index Terms—Channel quantization, mutual information,
channel capacity, threshold, constraints.

I. INTRODUCTION

Motivated by the development of polar codes [1] and LDPC
codes [2], finding optimal quantizers that maximize the mutual
information between the input and output has been a topic
of interest in recent years. Many practical algorithms and
theoretical results for such optimal quantizers have been
proposed over the past decade [3]–[9]. Finding an optimal
quantizer that maximizes the mutual information in a general
setting is an NP-hard problem [10]. Consequently, using an
exhaustive search is intractable even for the modest size of the
input and output sets. Therefore, existing algorithms typically
find an approximate solution [4], [5], [7]. On the other hand,
under certain restrictions e.g., binary input channel, there exist
polynomial-time algorithms [3], [6], [11] for finding the exact
solution.

While there exist many exact and approximate algorithms
for finding an optimal quantizer that maximizes the mutual
information between the input and output under different
settings, the problem of finding an optimal quantizer that
maximizes the mutual information subject to some constraints
on the output, receives less attention. In this paper, we are
interested in studying the optimal quantizers in the following
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communication setting. We consider a sender transmits  
discrete symbols X = {G1, G2, . . . , G } modeled as a dis-
crete random variable - having a probability mass function
p(x) = [?(G1), ?(G2), . . . , ?(G )] over an arbitrary continuous
channel. As such, the received signal . is a distorted version
of - caused by the channel distortion that is characterized
by the conditional densities ?(H |G8) = q8 (H), 8 = 1, 2, . . . ,  .
To recover - , a quantizer & is used to quantize . back to
a discrete output Z = {I1, I2, . . . , I# } corresponding to a
random variable / with a probability mass function p(z) =
[?(I1), ?(I2), . . . , ?(I# )] such that the mutual information
� (-; /) is maximized subject to an arbitrary constraint on
p(z). Formally, we are interested in designing an optimal
quantizer &∗ that maximizes V� (-; /) − � (/) where V is a
positive number that controls the trade-off between maximizing
� (-; /) and minimizing an arbitrary cost function � (/).

This problem is a generalized version of the Deterministic
Information Bottleneck [12], and has many applications.
Specifically, using the entropy constraint on / , our problem is
exactly the DIB. Imposing entropy constraint on / is useful in
many applications that use low-bandwidth channels or limited
storage systems. For example, suppose one wants to quantize
a continuous data source before applying entropy coding, e.g.,
Huffman code, to gain compression. Ideally, one wants to
minimize the distortion between the original continuous data
and the quantized data. However, minimizing the distortion
may result in a high entropy of the quantized data which may
exceed a given storage capacity after compression. Thus, one
needs to impose a constraint on the entropy of the quantized
data to guarantee that the size of the resulted compressed data
is below the storage capacity while retaining much information
in the original source. Similarly, if the quantized data must be
transmitted over a limited bandwidth channel, it is important to
reduce the entropy of the data source below a certain threshold
in order to reduce the bit rate to match the limited channel
bandwidth.

To that end, the contributions of this paper are as follows.
We showed that there exists a convex quantizer that is optimal.
Specifically, let p(x|H) = [?(G1 |H), ?(G2 |H), . . . , ?(G |H)] be
the posterior distribution of - for a given value of H, we
show that for any arbitrary cost function � (.), the optimal
quantizer &∗ separates the vectors p(x|H) into convex cells.
Although using a different approach, our result is similar to
the result previously established for the quantization problems
without the constraint [3], [13]. In particular, we show that
for any given quantizer &(H), there exists a convex quantizer
&̃(H) such that: (1) &̃(H) produces the same p(z) as that of
&(H), therefore, the same cost function � (/), and (2) � (-; /)
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produced by &̃(H) is at least as large as that produced by
&(H). Therefore, a class of convex quantizers should contain
at least one optimal quantizer. In addition, using this result,
we describe a method for determining an upper bound on
the number of thresholds used in a convex quantizer, which
narrows down the search space for finding an optimal quantizer.
Numerical results are presented to validate the findings.

The outline of our paper is as follows. Section II is the
related work. We describe the problem formulation in Section
III. All the notations, definitions, preliminary results are
introduced in Section IV. Section V investigates the optimal
quantizer’s structure. An upper bound on the number of
optimal thresholds is constructed in Section VI. The numerical
results can be found in Section VII. Finally, we provide a few
concluding remarks in Section VIII.

II. RELATED WORK

When the input is binary, it can be shown that an optimal
quantizer (without output constraints) has the structure of
convex cells in the space of posterior distribution [3], [6], [11].
Based on this optimality structure, an optimal quantizer can be
found efficiently in polynomial time via dynamic programming
technique [3]. In particular, the structure of optimal binary-
input quantizers in [3] and [6] is constructed based on the
well-known result in [13] for the  -ary inputs. The results in
[13] and [14] showed that for  -ary input, an optimal quantizer
separates space of the posterior probability distribution into
convex cells via a number of hyper-plane cuts. The number of
hyper-plane cuts can be shown to be polynomial in the data
size. Thus, there exists a polynomial time algorithm to find
an optimal quantizer by exhaustively searching over all the
possible hyper-plane cuts in the posterior distribution space
[13].

There also exist a few results on finding a quantizer that
maximizes the mutual information subject to some constraints
on the output. Finding an optimal quantizer for maximiz-
ing/minimizing an objective function other than the mutual
information subject to certain output constraints, has a long
history. For example, the problem of entropy-constrained scalar
quantization [15], [16] and entropy-constrained vector quanti-
zation [17], [18] have been well established. The objectives in
these problems are minimizing a specific distortion function,
typically the mean square error (MSE) between the input
and the output while keeping the output entropy less than a
certain threshold. The imposed entropy constraint is crucial
in applications that use limited communication channels and
limited storage systems. Notably, the Deterministic Information
Bottleneck (DIB) method of Strouse et al. [12] is most related
to our work. Strouse et al. proposed a linear time iterative
algorithm to find a locally optimal quantizer that maximizes the
mutual information under the entropy constraint of the output.
On the other hand, our work is focused on the structure of the
optimal quantizer, and can find the exact solution albeit with
higher complexity. Our results also generalize the result in [13]
for the problem of minimizing impurity without constraints.
Specifically, the result in [13] states that the optimal partitions
are separated by hyper-plane cuts in the space of the posterior

distribution. We show that this structure is also valid for the
problem of maximizing mutual information subject to any
output constraints. Our proposed approach also relates closely
to the work of Gyorgy and Linder [15], [16] which constructed
the optimal structure of entropy-constrained scalar quantization.
Finally, we note that a part of our work was presented in [19].

III. PROBLEM FORMULATION

We consider a discrete input source X = {G1, G2, . . . , G }
modeled as a discrete random variable - consisting  discrete
symbols with a given p.m.f p(x) = [?(G1), ?(G2), . . . , ?(G )].
G8 is transmitted over a given arbitrary continuous channel that
distorts/maps G8 to a continuous value H ∈ R at the receiver. Let
. be a random variable that models the received signal, then the
channel distortion is characterized by  conditional densities
?(H |G8) = q8 (H), 8 = 1, 2, . . . ,  . A quantizer & is used to map
the continuous random variable . to a discrete output Z =

{I1, I2, . . . , I# } corresponding to a discrete random variable
/ consisting of # discrete outcomes I1, I2, . . . , I# with the
p.m.f p(z) = [?(I1), ?(I2), . . . , ?(I# )]. We note that p(z)
depends on &. Let � (/) be an arbitrary cost function of p(z).
Our goal is to find an optimal quantizer &∗ that maximizes
the trade-off between the mutual information � (-; /) and the
cost function � (/). Formally, we want to solve the following
optimization problem:

&∗ = max
&

V� (-; /) − � (/), (1)

where V is a pre-specified positive number that controls
the trade-off between maximizing � (-; /) and minimizing
� (/). A well-known constraint � (/) is the entropy � (/) =
−∑#

8=1 ?(I8) log ?(I8) which we will be used to validate our
findings in Section VII.

IV. PRELIMINARIES

A. Notations and definitions

For convenience, we use the following notations and
definitions:

1) p(x) = [?(G1), ?(G2), . . . , ?(G )] = [?1, ?2, . . . , ? ]
denotes the p.m.f of the input random variable - .

2) ?(H |G8) = q8 (H), 8 = 1, 2, . . . ,  denotes the conditional
density of received-output H for a given transmitted input
G8 . Unlike a AWGN channel, q8 (H) and q 9 (H) can be
quite different as the channel may distort signals G8 and
G 9 differently. We assume that q8 (H) is a continuous,
positive, and differentiable function.

3) ?(H) denotes the density function of H. Specifically,

?(H) =
 ∑
8=1

?8q8 (H). (2)

4) p(x|H) = [?(G1 |H), ?(G2 |H), . . . , ?(G |H)] denotes the
conditional probability vector of - given a H ∈ . where,

?(G8 |H) =
?8q8 (H)∑ 
9=1 ? 9q 9 (H)

. (3)
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5) The output set Z8 denotes the set of H’s that is mapped
to the 8Cℎ output I8 by &(H). Formally,

Z8 = {H : &(H) = I8}. (4)

Definition 1. (Convex quantizer ( ˜@D0=C8I4A˜@D0=C8I4A˜@D0=C8I4A)) Let
Z1,Z2, . . . ,Z# be the # sets induced by a quantizer
&(H). &̃(H) is a convex quantizer (denoted by ˜@D0=C8I4A)
if for any Z8 and Z 9 , 8 ≠ 9 , there exists a hyper-plane that
separates the two conditional probability vectors p(x|H8) and
p(x|H 9 ), ∀H8 ∈ Z8 ,∀H 9 ∈ Z 9 .

We note that a ˜@D0=C8I4A produces the # convex regions in
the  dimensional space of the posterior distribution p(x|H),
but not the # convex regions in H.

Definition 2. (Kullback-Leibler (KL) divergence) The KL
divergence of two probability vectors a = (01, 02, . . . , 0 ) and
b = (11, 12, . . . , 1 ) is defined by:

� (a| |b) =
 ∑
8=1

08 log( 08
18
). (5)

Definition 3. (Centroid) The centroid of output set Z8 is a
 -dimensional probability vector c8 = [21

8
, 22
8
, . . . , 2 

8
] that

minimizes the total KL divergence from p(x|H) to c8 , ∀H ∈ Z8 .
Formally,

c8 = arg min
c

∫
H∈Z8

� (p(x|H) | |c)?(H)3H. (6)

Definition 4. (Distortion measurement) The distortion of a
quantizer & that induces # output sets {Z1,Z2, . . . ,Z# } is:

� (&) =
#∑
8=1

� (&Z8 ) =
#∑
8=1

∫
H∈Z8

� (p(x|H) | |c8)?(H)3H, (7)

where c8 is the centroid of Z8 and � (&Z8 ) is the distortion
induced for each Z8 ,

� (&Z8 ) =
∫
H∈Z8

� (p(x|H) | |c8)?(H)3H. (8)

B. Optimal quantizer and optimal clustering using Kullback-
Leibler divergence

It is well-known that finding an optimal quantizer that
minimizes a concave impurity function can be solved using
an iterative clustering algorithm with a suitable distance from
a data point to its centroid [20]. In a special case where
the impurity function is the entropy, minimizing entropy
impurity is equivalent to maximizing mutual information [3],
[4]. Consequently, Zhang and Kurkoski showed that finding an
optimal quantizer &∗ that maximizes the mutual information
between the input and the output is equivalent to determining
the optimal clustering that minimizes the distortion using KL
divergence as the distance [4]. The result in [4] was constructed
for discrete domain but it can be extended to continuous
domain. For ease of analysis, we will provide a proof sketch.
For a given H and a given quantizer & that maps H to Z8
with centroid c8 , the KL-divergence between the posterior
distribution p(x|H) and c8 is denoted by � (p(x|H) | |c8). If the
expectation is taken over . , from Lemma 1 in [4], we have:

E. [� (p(x|H) | |c8)] = � (-;. ) − � (-; /).

Since p(x) and q8 (H) are given, � (-;. ) is given and
independent of the quantizer &. Thus, maximizing � (-; /)
over & is equivalent to minimizing E. [� (p(x|H) | |c8)] with
an optimal quantizer being a solution to:

&∗ = min
&
E. [� (p(x|H) | |c8)] (9)

= min
&

#∑
8=1

∫
H∈Z8

� (p(x|H) | |c8)?(H)3H, (10)

where ?(H) is the density of H ∈ . . Now, the problem of
finding the optimal quantizer maximizing mutual information
can be cast as the problem of finding the optimal clustering that
minimizes the KL divergence. Thus, in the rest of this paper,
we will focus on finding the optimal clustering minimizing
the KL divergence. Also, KL divergence is a special case of
Bregman divergence, and for a given quantized-output set Z8 ,
its centroid c8 can be computed by a closed-form expression
(Proposition 1, [21]).

V. STRUCTURE OF OPTIMAL QUANTIZER

We show that an optimal quantizer can be found within
a class of convex quantizers as defined in Definition 1. Our
approach is to show that any quantizer can be replaced by an
equal or better convex quantizer that maximizes the objective
function V� (-; /) − � (/). Specifically, we show that for any
quantizer &, there exists a convex quantizer &̃ such that: (1)
&̃ produces the same output distribution as & and (2) the total
distortion induced by � (&̃) is less than or equal to � (&), or
equivalently � (-; /) produced by &̃ is at least as large as that
produced by &. Thus, the optimal quantizer that maximizes
V� (-; /)−� (/) must belong to the class of convex quantizers.
Consequently, an algorithm for finding the best quantizer in the
set of all convex quantizers will find an optimal quantizer. The
main point for doing this is that it is easier from an algorithmic
viewpoint to search for an optimal quantizer in a set of convex
quantizers than to search through all the possible quantizers.
We now consider a simple case of binary quantization.

A. Structure of an optimal quantizer for binary output (# = 2)

Theorem 1. Let & be an arbitrary quantizer that induces two
disjoint discrete output sets Z1 and Z2 with two corresponding
centroids c1 = [21

1, 2
2
1, . . . , 2

 
1 ], c2 = [21

2, 2
2
2, . . . , 2

 
2 ]. There

exists a convex quantizer &̃ associated with a hyper-plane that
separates the space of the posterior distribution p(x|H) into
two discrete sets {Z̃1, Z̃2} having the corresponding centroids
{c̃1, c̃2} such that (1) ?(Z8)

4
= %(H ∈ Z8) = ?(Z̃8)

4
= %(H ∈

Z̃8), 8 = 1, 2, and (2) � (&̃) ≤ � (&).

Proof. Let & be a given arbitrary quantizer. & induces Z1,
Z2, c1 and c2. Let � (p(x|H)) = � (p(x|H) | |c1)−� (p(x|H) | |c2),
then:

� (p(x|H)) = � (p(x|H) | |c1) − � (p(x|H) | |c2)

=

 ∑
8=1
?(G8 |H)log

?(G8 |H)
281

−
 ∑
8=1
?(G8 |H)log

?(G8 |H)
282

=

 ∑
8=1

?(G8 |H) log
282
281

= a) p(x|H), (11)
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where a = [01, 02, . . . , 0 ] be a  -dimensional vector where

08 = log
282
281

, 8 = 1, 2, . . . ,  .

Now, let us consider a family of hyper-planes H(ℎ) in the
 -dimensional space parametrized by ℎ ∈ R in the following
equation:

a) p(x|H) = ℎ. (12)

For a given ℎ, the hyper-plane H(ℎ) separates the  -
dimensional posterior distribution p(x|H) into two disjoint sets
corresponding to � (p(x|H)) ≤ ℎ and � (p(x|H)) > ℎ. Based
on Definition 1, there is also a family of convex quantizers &̃
for each ℎ. Our goal is to show that there exists a hyper-plane
H( ℎ̃) associated with a convex quantizer &̃ that separates the
space of posterior distribution into two disjoint sets {Z̃1, Z̃2}
such that ?(Z8) = ?(Z̃8), and � (&̃) ≤ � (&).

Proof of claim (1). Assume that & produces two output
sets Z1 and Z2 with the probability ?(Z1) and ?(Z2), ?(Z1) +
?(Z2) = 1. Our first claim is that one can always find a
convex quantizer &̃ corresponding to a hyper-plane H( ℎ̃) that
produces Z̃1 and Z̃2 such that ?(Z̃1) = ?(Z1) and ?(Z̃2) =
?(Z2).

Consider the following convex quantizer:

&̃(H) =
{
Z̃1 if � (p(x|H)) ≤ ℎ,
Z̃2 if � (p(x|H)) > ℎ.

(13)

By increasing value of ℎ, ℎ ∈ (−∞, +∞), the set Z̃1 must
enlarge while Z̃2 must reduce. Thus, by increasing/decreasing
the value of ℎ, one can always choose an appropriate value
of ℎ = ℎ̃ such that ?(Z̃1) = ?(Z1) and ?(Z̃2) = ?(Z2). ℎ̃
corresponds to the hyper-plane H( ℎ̃) of the convex quantizer
&̃.

Proof of claim (2). Our second claim is that � (&̃) ≤ � (&).
Indeed, using the hyper-plane H( ℎ̃) in the proof of claim
(1) which produces two discrete output sets Z̃1 and Z̃2. Let
A = Z̃1 ∩ Z2 and B = Z̃2 ∩ Z1. Note that if A or B is empty
set then & can be readily shown to be a convex quantizer. Let
?(A) = %(H ∈ A) and ?(B) = %(H ∈ B). We first show that
?(A) = ?(B) as follows.

?(Z1)
Z̃1∩Z̃2=∅

= ?((Z1 ∩ Z̃1) ∪ (Z1 ∩ Z̃2))
= ?(Z1 ∩ Z̃1)+?(Z1 ∩ Z̃2) = ?(Z1 ∩ Z̃1)+?(B). (14)

Similarly,

?(Z̃1)
Z1∩Z2=∅

= ?((Z1 ∩ Z̃1) ∪ (Z̃1 ∩ Z2))
= ?(Z1 ∩ Z̃1)+?(Z̃1 ∩ Z2) = ?(Z1 ∩ Z̃1)+?(A). (15)

Since ?(Z1) = ?(Z̃1), from (14) and (15), we have ?(A) =
?(B).

Next, let ?(H) be the density of H ∈ . . From � (p(x|H8)) ≤
ℎ̃ < � (p(x|H 9 )), ∀H8 ∈ Z̃1 and ∀H 9 ∈ Z̃2, together with A =

Z̃1 ∩ Z2 and B = Z̃2 ∩ Z1, then � (p(x|H8)) ≤ ℎ̃ < � (p(x|H 9 )),
∀H8 ∈ A and ∀H 9 ∈ B, (16) is established.

By adding
∫
H∈{Z1∩Z̃1 }

� (p(x|H) | |c1)?(H)3H +∫
H∈{Z2∩Z̃2 }

� (p(x|H) | |c2)?(H)3H to both sides of (16),
we obtain (17).

By moving −
∫
H∈A � (p(x|H) | |c2)?(H)3H to the right hand

side and −
∫
H∈B � (p(x|H) | |c2)?(H)3H to the left hand side of

(17), we obtain (18).
Now, since Z1 ∩Z2 = ∅, A∩ {Z1 ∩ Z̃1} = {Z̃1 ∩Z2} ∩ {Z1 ∩

Z̃1} = ∅. Thus, the integral over A and {Z1 ∩ Z̃1} is equivalent
to the integral over A ∪ {Z1 ∩ Z̃1} = Z̃1. Similarly, using
B∪{Z2∩Z̃2} = Z̃2, B∪{Z1∩Z̃1} = Z1 and A∪{Z2∩Z̃2} = Z2,
(19) is obtained from (18).

Let c̃1 and c̃2 be the new centroids of Z̃1 and Z̃2. From
Definition 3, (20) follows.

Finally, from (19) and (20), (21) is established. Combining
(21) and Definition 4, � (&̃) ≤ � (&). Therefore, for any
arbitrary quantizer &, there exists a convex quantizer &̃ that
produces the same output distribution together with a distortion
is equal or smaller than that of &. �

B. Structure of an optimal quantizer for # > 2 quantization
levels

Theorem 2. Let & be an arbitrary quantizer having discrete
output sets {Z1,Z2, . . . ,Z# } with # centroids c1, c2, . . . , c# ,
there exists a convex quantizer &̃ with # output sets
{Z̃1, Z̃2, . . . , Z̃# } such that Z̃8 and Z̃ 9 are separated by a
hyper-plane H(ℎ8 9 ) in the space of posterior distribution ∀8, 9 ,
?(Z8) = ?(Z̃8) ∀8, and � (&̃) ≤ � (&).

Proof. Let & be an arbitrary quantizer that produces # output
sets {Z1,Z2, . . . ,Z# }. Consider any two output sets Z8 and
Z 9 , 8 ≠ 9 . Now, let Y8 9 = Z8 ∪ Z 9 . Based on Theorem 1,
there is a convex quantizer &̃ corresponding to a hyper-plane
H(ℎ8 9 ) separates the  -dimensional points p(x|H),∀H ∈ Y8 9
into two sets Z̃8 , and Z̃ 9 with ?(Z8) = ?(Z̃8), ?(Z 9 ) = ?(Z̃ 9 )
and � (&̃) ≤ � (&). Specifically, we have:

&̃(H) =
{
Z̃8 if H ∈ Y8 9 and � (p(x|H)) ≤ ℎ8 9 ,
Z̃ 9 if H ∈ Y8 9 and � (p(x|H)) > ℎ8 9 ,

(22)

where ℎ8 9 is a real number corresponding to the hyper-plane
H(ℎ8 9 ).

Since the distortion is additive, and the result holds for
arbitrary Z8 and Z 9 , by repeating the above process for at

most
# (# − 1)

2
pairs of Z8 and Z 9 , one can construct a

convex quantizer &̃ which produces {Z̃1, Z̃2, . . . , Z̃# } such
that ?(Z8) = ?(Z̃8) ∀8, and � (&̃) ≤ � (&). �

Remark 1. (Optimality) For a given quantizer &, there exists
a convex quantizer &̃ having the same output probability p(z)
with a lower distortion. This leads to the same cost function
� (/) for both & and &̃. Since the distortion � (&̃) is smaller
or at most equal than that of � (&), � (-; /) induced by &̃ is
at least as large as that produced by &. Thus, we can conclude
that an optimal quantizer that maximizes the objective function
V� (-; /) − � (/) must belong to the set of convex quantizers.

Remark 2. (Complexity) Since the set of convex quantizers is
a subset of all the possible quantizers, searching over the set of
convex quantizers is faster than searching over all the possible
quantizers. Specifically, if the continuous variable H ∈ R is
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∫
H∈A

� (p(x |H)) ? (H)3H =

∫
H∈A
[� (p(x |H) | |c1) − � (p(x |H) | |c2) ]? (H)3H

≤
∫
H∈B
[� (p(x |H) | |c1) − � (p(x |H) | |c2) ]? (H)3H =

∫
H∈B

� (p(x |H)) ? (H)3H (16)

∫
H∈A
� (p(x |H) | |c1)? (H)3H−

∫
H∈A
� (p(x |H) | |c2)? (H)3H+

∫
H∈{Z1∩Z̃1}

� (p(x |H) | |c1)? (H)3H+
∫
H∈{Z2∩Z̃2}

� (p(x |H) | |c2)? (H)3H

≤
∫
H∈B
� (p(x |H) | |c1)? (H)3H−

∫
H∈B
� (p(x |H) | |c2)? (H)3H+

∫
H∈{Z1∩Z̃1}

� (p(x |H) | |c1)? (H)3H+
∫
H∈{Z2∩Z̃2}

� (p(x |H) | |c2)? (H)3H

(17)

(∫
H∈A
� (p(x |H) | |c1)? (H)3H+

∫
H∈{Z1∩Z̃1}

� (p(x |H) | |c1)? (H)3H
)
+
(∫

H∈{Z2∩Z̃2}
� (p(x |H) | |c2)? (H)3H+

∫
H∈B
� (p(x |H) | |c2)? (H)3H

)
≤

(∫
H∈B
� (p(x |H) | |c1)? (H)3H+

∫
H∈{Z1∩Z̃1}

� (p(x |H) | |c1)? (H)3H
)
+
(∫

H∈{Z2∩Z̃2}
� (p(x |H) | |c2)? (H)3H+

∫
H∈A
� (p(x |H) | |c2)? (H)3H

)
(18)

∫
H∈Z̃1

� (p(x |H) | |c1) ? (H)3H +
∫
H∈Z̃2

� (p(x |H) | |c2) ? (H)3H ≤
∫
H∈Z1

� (p(x |H) | |c1) ? (H)3H +
∫
H∈Z2

� (p(x |H) | |c2) ? (H)3H (19)

∫
H∈Z̃1

� (p(x |H) | |c̃1) ? (H)3H +
∫
H∈Z̃2

� (p(x |H) | |c̃2) ? (H)3H ≤
∫
H∈Z̃1

� (p(x |H) | |c1) ? (H)3H +
∫
H∈Z̃2

� (p(x |H) | |c2) ? (H)3H (20)

∫
H∈Z̃1

� (p(x |H) | |c̃1) ? (H)3H +
∫
H∈Z̃2

� (p(x |H) | |c̃2) ? (H)3H ≤
∫
H∈Z1

� (p(x |H) | |c1) ? (H)3H +
∫
H∈Z2

� (p(x |H) | |c2) ? (H)3H (21)

discretized into " discrete data points, an exhaustive search
over all the possible partitions of " points into # disjoint
subsets will have an exponential time complexity of $ (#" ).
On the other hand, the time complexity of an exhaustive search
over all the possible hyper-planes (or over all the possible
convex quantizers) is only $ (" −1) [13]. Typically, " >>  ,
thus searching over the set of convex quantizers is much faster.

Remark 3. (Tractable case: binary inputs) For a special setting
of binary input channel  = 2, a hyper-plane in the space of the
posterior distribution is a scalar and the dynamic programming
algorithm is capable to determine an optimal quantizer in
$ ("3). We refer the reader to the work in [19] for the details.

Remark 4. (Locally optimal solution) While this paper aims to
determine a globally optimal quantizer for a general scenario,
its time complexity is still high $ (" −1). However, it is
possible to derive an optimality condition for a locally optimal
quantizer which is similar to the result in [17], [12]. Indeed,
using a similar approach in [17], [12], it is possible to show
that a locally optimal quantizer &∗ must satisfy:

&(H) → Z8 ←→ 3 (H,Z8) ≤ 3 (H,Z 9 ),∀ 9 ≠ 8,

where the "distance" 3 (H,Z8) from H to Z8 is defined by:

3 (H,Z8) = V� (p(x|H) | |c8) +
d� (/)
d?(I8)

.

Based on this optimality condition, an iterative algorithm which
is similar to :-means algorithm can be used to find a locally
optimal solution in linear time complexity [17], [12].

VI. BOUNDS ON THE NUMBER OF THRESHOLDS FOR AN
OPTIMAL QUANTIZER

We note that a convex quantizer & quantizes a point H based
on which convex regions (separated by a set of hyper-planes)
the corresponding posterior distribution p(x|H) lies in. This
requires mapping a point H to its posterior distribution, then
successively narrowing down which regions it lies in using the
hyper-plane equations. Often times, it is desirable to determine
a set of thresholds C8 ∈ R, 8 = 1, 2, . . . , ( that separates H

into multiple disjoint regions R8 ∈ R directly. That said, two
high-dimensional points p(x|H1) and p(x|H2) that belong to
the same convex region in the posterior distribution space may
map to multiple disjoint regions R8’s. Using C8’s, one is able
to quantize H directly based on its value. In this section, we
determine an upper bound on the number of thresholds C8 that
separates the regions R8’s associated with an optimal quantizer.

As an example, if the output is binary, i.e., Z = {I1, I2}, then
C1, C2, . . . , C( divide R into ( + 1 contiguous disjoint segments
R8 = (C8−1, C8), with C0 = −∞ and C(+1 = ∞. Each H in R8 is
mapped to either I1 or I2 alternatively. For a given number
of thresholds and the search step size (grid resolution), one
can exhaustively search over all the possible C1, C2, . . . , C( to
determine an optimal quantizer. In [6], Kurkoski and Yagi
gave a condition for which an optimal quantizer requires
only a single threshold to maximize the mutual information
between the input and the output of binary-input binary-output
channels. Thus, an exhaustive search is practical. In [19], the
author extended the single threshold condition in [6] for binary
channels under the quantized-output constraint. However, for
 -ary input channels,  > 2, finding the minimum number of
thresholds that is possible to achieve the maximum of mutual
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information between the input and the output is still an open
problem. In this section, we utilize the results in Theorem 1
and Theorem 2 to construct an upper bound on the required
number of thresholds C8’s for an optimal quantizer.

Theorem 1 and Theorem 2 state that the optimal output
sets are separated by hyper-planes in the posterior distribution
space which correspond to a number of thresholds C8’s in H ∈ R.
In particular, if a hyper-plane is specified by an equation, then
the corresponding number of thresholds C8’s associated with
the two sets separated by this hyper-plane is at most equal to
the number of distinct real solutions of this equation. Thus,
an upper bound on the number of thresholds can be obtained
by determining an upper bound on the number of solutions of
the set of equations specified the hyper-planes of an optimal
quantizer. Theorem 3 formally states this result.

Theorem 3. Let R; ∪ RA = R and R; ∩ RA = ∅. If ∀H; ∈ R;
and ∀HA ∈ RA ,

a) p(x|HA ) ≥ ℎ, a) p(x|H;) < ℎ (23)

for given ℎ > 0 and a, then R; and RA are separated by at
most ( thresholds C1, C2, . . . , C( ∈ R where ( is the number of
real distinct solutions H to the equation:

a) p(x|H) = ℎ. (24)

Proof. Since q8 (H) is assumed to be continuous, positive and
differentiable everywhere and ℎ ∈ R, B(H) = a) p(x|H) − ℎ is
a continuous function. Furthermore, if B(H) has ( real distinct
solutions, then we need exactly ( thresholds to separate R into
( + 1 contiguous disjoint segments, each alternatively maps to
either R; if a) p(x|H) < ℎ or RA if a) p(x|H) ≥ ℎ. �

Theorem 3 provides a concrete approach to determine the
number of required thresholds by finding the number of
solutions of a hyper-plane equation. Next, using the result
in Theorem 3, we construct an upper bound on the number of
thresholds for additive white Gaussian noise (AWGN) channels.

Theorem 4. For an additive white Gaussian noise (AWGN)
channel, the input symbols satisfy G8+1−G8 = X, 8 = 1, 2, . . . #−
1, where X is a constant, and  quantization levels, the optimal

quantizer requires no more than
# (# − 1) ( − 1)

2
thresholds.

Proof. Using (3), (24) can be rewritten by:

01
?1q1 (H)∑ 
8=1 ?8q8 (H)

+02
?2q2 (H)∑ 
8=1 ?8q8 (H)

+ · · · + 0 
? q (H)∑ 
8=1 ?8q8 (H)

=ℎ,

(25)
or,

 ∑
8=1
(08 − ℎ)?8q8 (H) = 0, (26)

where

q8 (H) =
1

f
√

2c
4
−

1
2
(
H − G8
f

)2
. (27)

Since G8+1 − G8 = X, G8 − G1 = (8 − 1)X. Substituting (27) into
(26) and using G8 − G1 = (8 − 1)X, we have:

 ∑
8=1
(08 − ℎ)?8q8 (H)

=

 ∑
8=1
(08 − ℎ)?8

1
f
√

2c
4
−

1
2
( H − G8
f

)2

=

 ∑
8=1
(08 − ℎ)?8

1
f
√

2c
4
−

1
2
( H2 − 2HG8 + G2

8
− 2HG1 + 2HG1

f2
)

=

 ∑
8=1
(08 − ℎ)?8

1
f
√

2c
4
−

1
2
( H2 − 2HG1 + G2

8
− 2H(G8 − G1)

f2
)

=
1

f
√

2c
4
−
H2−2HG1

2f2
(  ∑
8=1
(08−ℎ)?84

−
G2
8

2f24

H(G8−G1)
f2

)
=

1
f
√

2c
4
−
H2−2HG1

2f2
(  ∑
8=1
(08−ℎ)?84

−
G2
8

2f24

H(8−1)X
f2

)
. (28)

Let 4

H

f2 = F,
∑ 
8=1 (08 − ℎ)?84

−
G2
8

2f2 = 18 , and since

1
f
√

2c
4
−
H2 − 2HG1

2f2 ≠ 0, from (26) and (28), we have:

 ∑
8=1

18 (F X)8−1 = 0. (29)

This follows that F X must be roots of a polynomial function
having a degree at most  − 1 which can have at most  − 1

solutions. Since F X and 4

H

f2 are both monotonic functions,
(29) has at most  − 1 solutions in H which results in at most
 − 1 thresholds in R.

Next, since # partitioned-outputs require at most # (#−1)/2
hyper-plane cuts, a quantizer with # (#−1) ( −1)/2 thresholds
is sufficient to maximize the mutual information. �

Remark 5. AWGN is one of the most common channels in
telecommunication, and the assumption of G8+1 − G8 = X is not
too restricted. Indeed, many amplitude modulation techniques
such as Amplitude Shift Keying (ASK), On-Off Keying (OOK),
and Pulse Amplitude Modulation (PAM) satisfy the condition
in Theorem 4.

Remark 6. As a consequence of Theorem 4, if the channel
is an AWGN binary-input channel, i.e. # = 2, then an optimal
quantizer requires at most  − 1 thresholds. This agrees with
the results in [3], [19]. Furthermore, if the channel is AWGN
binary-input binary-output (# =  = 2), then a single threshold
quantizer is optimal.

Remark 7. Based on the proposed upper bound on the number
of thresholds, an exhaustive search algorithm can be used for
finding the globally optimal quantizer of AWGN channels for
small  and # . For example, if # = 2, an optimal quantizer
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requires at most  − 1 thresholds which divides R into  

contiguous disjoint segments, each maps to either I1 or I2
alternatively. Since ℎ ∈ R, let n denote the search resolution
i.e., the distance between two consecutive points on the search
grid. For a given n , an exhaustive search algorithm would have

time complexity of $ (" −1) where " =
!

n
, and ! is the

search range.

Remark 8. Note that our proposed method can be used to
determine the number of thresholds for other additive noise
channels such as additive exponential distribution, additive
uniform distribution, and additive gamma distribution.

VII. NUMERICAL RESULTS

First, we want to refer the reader to the numerical results in
[19] which can be considered as special cases for illustrating
our Theorem 1 and Theorem 2. In this section, we only focus
on providing some examples to verify the theoretical results
in our proposed Theorem 4.

Example 1. We consider a binary-input channel having X =

{G1 = −10, G2 = 10} and p(x) = [0.6, 0.4]. - is corrupted by
an additive white Gaussian noise having probability density
function � (` = 0, f = 2) with q1 (H) = � (−10, 2) and q2 (H) =
� (10, 2). Next, we want to design an optimal quantizer & that
quantizes H ∈ R to a binary output Z = {I1, I2} such that the
mutual information � (-; /) is maximized while � (/) ≤ W for
a given W.

Since # =  = 2, Theorem 4 points out that a single-
threshold quantizer is optimal. To confirm this theoretical
result, we exhaustively search over all the possible single-
threshold and two-threshold quantizers in the interval [−15, 15]
with the resolution n = 0.1. The maximum values of � (-; /)
using single-threshold quantizers and two-threshold quantizers
are denoted by the red-dash curve and the black-curve in
Fig. 1, respectively. As seen, the maximum values of mutual
information using single-threshold quantizers are slightly larger
than the optimal values of mutual information provided by
two-threshold quantizers, for W = 0.1, 0.2, . . . , 0.9, 1.

This numerical result indicates that if the channel is AWGN
binary-input binary-output (# =  = 2), then an optimal
quantizer can have a single threshold. Thus, our example
confirms the result in Theorem 4.

Example 2. We consider a channel having input X = {G1 =

−10, G2 = 0, G3 = 10} and p(x) = [0.3, 0.4, 0.3]. Similar to
Example 1, - is corrupted by an additive white Gaussian noise
having probability density function � (` = 0, f = 1) with
q1 (H) = � (−10, 1), q2 (H) = � (0, 1), and q3 (H) = � (10, 1).
We want to design an optimal quantizer & that quantizes H ∈ R
to a binary quantized-output Z = {I1, I2} to maximize � (-; /)
while � (/) ≤ W, for a given W.

Based on Theorem 4, using  = 3 and # = 2, the
optimal quantizer requires at most 2 thresholds. To verify
the upper bound on the number of thresholds, we exhaustively
search over all the possible single-threshold, two-threshold and
three-threshold quantizers, respectively. Due to a high time-
complexity of performing an exhaustive search algorithm with
three thresholds, we limit the searching range in [−15, 15]
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Figure 1: Example 1: (a) maximum values of mutual infor-
mation using single-threshold quantizers vs. two-threshold
quantizers under output constraint � (/) ≤ W for various values
of W = 0.1, 0.2, . . . , 0.9, 1; (b) zoom in for W ∈ [0.7, 1].

with the resolution n = 0.2. The maximum values of � (-; /)
for single-threshold quantizers, two-threshold quantizers, and
three-threshold quantizers are denoted by the black curve, the
black-dash curve, and the green curve in Fig. 2, respectively.
As seen, � (-; /) provided by two-threshold quantizers are
slightly larger than that of three-threshold quantizers. On the
other hand, � (-; /) provided by single-threshold quantizers
are always less than that produced by both two-threshold and
three-threshold quantizers. This numerical result implies that
two-threshold quantizers are optimal in this example which
confirms the result in Theorem 4.

We note that that finding an optimal quantization for a large
number of inputs is an extremely hard (NP-complete) problem
[10]. While our result on bounding the maximum number of
thresholds for an optimal quantization can be used to reduce
the computations of an exhaustive search on small problems, it
is not feasible for arbitrarily large problems. Our future work
will focus on alleviating this shortcoming.
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Figure 2: Example 2: (a) Maximum values of mutual infor-
mation using single-threshold quantizers, two-threshold quan-
tizers and three-threshold quantizers under output constraint
� (/) ≤ W for various values of W = 0.1, 0.2, . . . , 0.9, 1; (b)
zoom in for W ∈ [0.5, 0.7].

VIII. CONCLUSION

In this paper, we investigate the structure of optimal
quantizers that maximize the mutual information between
the input and the output under an arbitrary constraint on the
output distribution. Our result shows that the optimal quantizer
must belong to a class of convex quantizers. Furthermore, we
describe an upper bound on the number of thresholds for an
optimal quantizer. Based on this upper bound, an exhaustive
search algorithm with polynomial time complexity can be used
to determine an optimal solution.
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