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Abstract

With the explosive growth of video applications over the Internet, many approaches have been proposed

to stream video effectively over packet switched, best-effort networks. In this paper, we propose a receiver-

driven protocol for simultaneous video streaming from multiple senders to a single receiver in order to

achieve higher throughput, and to increase tolerance to packet loss and delay due to network congestion.

Our receiver-driven protocol employs a novel rate allocation scheme and packet partition algorithm. The

rate allocation scheme, run at the receiver, determines the sending rate for each sender by taking into

account available network bandwidth, channel characteristics, and a prespecified, fixed level of forward

error correction, in such a way as to minimize the probability of packet loss. The packet partition algorithm,

run at the senders based on a set of parameters estimated by the receiver, ensures that every packet is sent

by one and only one sender, and at the same time, minimizes the startup delay. Using both simulations and

Internet experiments, we demonstrate the effectiveness of our protocol in reducing packet loss.

To appear in IEEE Transactions on Multimedia April 2004
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I. INTRODUCTION

Video streaming over best-effort, packet-switched networks is challenging due to a number of factors

such as high bit rates, delay, and loss sensitivity. As such, transport protocols such as TCP are not suitable

for streaming applications. To this end, many solutions have been proposed from different perspectives.

From source coding perspective, layered and error-resilient video coding have been proposed. A layered

video codec deals with heterogeneity and time-varying nature of the Internet by adapting its bit rate to the

available bandwidth [1]. An error-resilient codec modifies the bit stream in such a way that the decoded

video degrades more gracefully in lossy environments [1][2][3]. From channel coding perspective, Forward

Error Correction (FEC) techniques have been proposed to increase reliability at the expense of bandwidth

expansion [4][5][6][7]. From the protocol perspective, there are approaches based on multicast [5][8] and

TCP-friendly protocols [9] for streaming multimedia data over the Internet. Multicast reduces the network

bandwidth by not sending duplicate packets on the same physical link [8]; however, it is only appropriate for

situations with one sender and many receivers. Meanwhile, TCP-friendly protocols use rate-based control

to compete fairly with other TCP traffic for bandwidth, and at the same time, stabilize the throughput, thus

reducing the jitter for multimedia streaming [10]. From networking perspective, content delivery network

(CDN) companies such as Akamai employ edge architecture by pushing content to the edge of the network,

and by strategically placing servers at the edge of the Internet in such a way that each client can choose the

server resulting in shortest round-trip time and least amount of congestion.

An alternative to edge streaming for providing smooth video delivery, is to divide video among multiple

streaming senders in order to effectively provide the required throughput [9]. Having multiple senders is in

essence a diversification scheme in that it combats unpredictability of congestion in the Internet. Specifically,

we assume independent routes from various senders to the receiver, and argue that the chances of all routes

experiencing bursty packet loss at the same time is quite small. In addition if the route between a particular

sender and the receiver experiences congestion during streaming, the receiver can re-distribute rates among

the existing senders, or recruit new senders so as to minimize the effective loss rate.

In this paper, we propose a framework for streaming video from multiple mirror sites simultaneously
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to a single receiver in order to achieve higher throughput, and to increase tolerance to loss and delay

due to network congestion. Our solution combines approaches from different perspectives including system

architecture and transport protocols. From the systems perspective, we expand the edge architecture to allow

simultaneous video streaming from multiple senders as shown in Figure 1. This is in contrast with the edge

architecture where only one server is responsible for streaming video to its nearest clients. From protocol

perspective, we use a receiver-driven protocol to coordinate simultaneous transmission of video from multiple

mirror sites to a single receiver effectively. Our proposed distributed video streaming protocol, first introduced

Fig. 1. Distributed video streaming architecture.

in [9][11], consists of rate allocation and a packet partition algorithms. The rate allocation scheme, run at

the receiver, is used in conjunction with FEC to minimize the probability of packet loss in bursty channel

environments by splitting the sending rates appropriately across the senders. The packet partition algorithm,

run at individual senders based on a set of parameters estimated at the receiver, ensures that every packet is

sent by one and only one sender, and at the same time, minimizes the startup delay. Senders and receiver

communicate with each other through control packets that contain the required information to facilitate the

rate allocation and packet partition algorithms.

In this paper, we employ FEC as part of our proposed distributed streaming protocol. A well known

drawback of FEC though is that it results in bandwidth expansion, and hence reduces the amount of available

bandwidth for the actual video bit stream. Since the level and burstiness of packet loss in the Internet

fluctuates significantly, incorporating the optimal amount of FEC in any single route streaming application is

a difficult task; too little redundancy cannot effectively protect the video bit stream, and too much redundancy
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consumes too much bandwidth unnecessarily. Thus for single route streaming, FEC level has to be closely

matched to channel characteristics for it to be effective. In this paper, we show that FEC in a multiple sender

scenario can combat bursty loss behavior in the Internet more effectively than in the single sender case.

Specifically the above sensitivity mismatch between FEC level and network characteristics for single route

streaming applications is reduced as compared with multi route streaming.

A. Related Work

Many diversity schemes have been proposed in wireless literature, ranging from frequency and time,

to spatial diversity [12]. In wired networks, path diversity was first proposed in [13], and the theoretical

work on information dispersion for security and load balancing was proposed in [14]. Recently, there have

been other works dealing with simultaneous downloading of data from multiple mirror sites. If the data

is not delay sensitive, it is possible to use multiple TCP connections to different sites, with each TCP

connection downloading a different part of the data. For example, the authors in [15][16] use Tornado codes

to download data simultaneously from multiple mirror sites. More recently, Digital Fountain has used an

advanced class of linear-time codes to enable the receivers to receive any N linear-time coded packets from

different senders, so as to recover N original data packets. There has also been a study on the throughput

of TCP connection using multiple paths in [17]. In [18], the authors propose CoopNet, a tree structure

for delivering video to the receivers from multiple servers. Also Peer-to-Peer file sharing system such as

Kazaa allows downloading the media files simultaneously from multiple participating members. Another

Peer-to-Peer system with adaptive layered streaming has also been proposed in [19]. In addition, multiple

description coding of video (MDC) has been studied in detail in [20][21][22] [23][24]. In this approach,

video source is partitioned into multiple descriptions, each one assumed to be sent along a different channel.

The assumption is that visual quality of the video degrades gracefully as the number of received descriptions

decrease due to channel impairments. The performance gain of using multiple servers together with MDC

over traditional single server approach is compared and analyzed in [25]. Recently, rate distortion optimization

in the framework of path diversity has been explored in [26]. Finally, authors in [27] have shown substantial

improvement for real-time voice communication over the Internet using path diversity together with MDC,
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and sophisticated playback schedule.

B. Assumptions

To successfully stream video from multiple senders, we assume that the bandwidth bottleneck is not at the

last hop. In streaming situations where the bottleneck is in the last hop, e.g. due to the physical bandwidth

limitation of dial-up modem, our proposed distributed streaming approach is of little use. Indeed if a client is

connected to the Internet through a low bandwidth connection, it is preferable to download the entire video in

a non-real time fashion before playing it back. Our premise is that, asymptotically, as broadband connections

to the Internet such as DSL become prevalent, the limiting factor in streaming is packet loss and delay due

to congestion along the streaming path, rather than the physical bandwidth limitations of the last hop. Also,

studies in [28] indicate that at least 60% of the Autonomous System (AS) are multi-homed to two or more

providers, i.e. sufficiently disjoint paths to the receiver can be created using senders in different providers.

Resilient Overlay Network (RON) [29] also demonstrates the existence of many sufficiently disjoint paths

between two nodes on the Internet.

We now list additional assumptions about our distributed streaming framework:

1) The total needed video rate, S, is available from the aggregate bandwidth of all the senders. We make

this assumption for sake of simplicity; If this assumption is not satisfied, either scalable video can be

used to reduce the bit rate, or additional senders can be recruited.

2) The amount of FEC is assumed to be fixed for a given streaming session.

3) Video is pre-coded at a fixed rate, and residing at all servers.

4) Average packet loss rate over long term is independent of the instantaneous sending rate. i.e. there is

no self congestion, and packet loss is only a result of cross traffic. This is a direct consequence of our

network model, i.e. two-state continuous Markov chain to be described shortly. This assumption holds

if the video bit rate is only a small part of the total traffic, i.e. there is a large degree of statistical

multiplexing. Since speed of routers on the Internet are on the order of hundreds of megabits to tens

of gigabits per second, and typical streamed video is less than 1Mbs, we believe this assumption is

justified in practice.
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5) Packet loss between two routes are independent. We make this assumption to simplify rate allocation

analysis. In general, the distributed streaming framework, provides benefits over traditional uni-sender

scheme even if packet loss correlation between routes is nonzero.

Our paper is organized as follows. In Section I-C, we provide an overall framework for distributed video

streaming, and describe the proposed transport protocol. Next, in Section II we describe and analyze the

proposed rate allocation scheme to be used with FEC. The goal of this algorithm is to split the sending

rates appropriately across the senders in order to minimize the packet loss, taking into account the network

conditions and a fixed amount of FEC. Beyond knowing the sending rate, each sender still needs to know

which packet to send in order to avoid duplicate packets and minimize startup delay. We propose a packet

partition algorithm in Section III to address this issue. Next, we present numerical and experimental results in

Section IV. In Section V, we address the limitations of our currently proposed system, and propose possible

extensions. Finally, we conclude in Section VI.

C. System Overview

Our transport protocol is a receiver-driven one in which, the receiver coordinates transmissions from

multiple senders based on the information received from the senders. A high level description of our

distributed streaming framework is shown in Figure 2. Each sender estimates and sends its round trip time

(RTT) to the receiver. The receiver uses the estimated round trip times and its own estimates of senders’

loss rates to calculate the optimal sending rate for each sender using the Rate Allocation Algorithm, in

such a way as to minimize the overall probability of packet loss. The receiver monitors variations in route

conditions of each sender in order to readjust rate distribution among senders. When the receiver decides

to change any of the senders’ sending rates, it sends identical control packets to all senders. The control

packet contains the synchronization sequence number, each sender’s RTT to the receiver, and the optimal

sending rates as calculated by the receiver for all senders. Upon receiving the control packets, each sender

sends UDP packets at the rate specified in the control packet. Each sender also runs a distributed packet

partition algorithm to determine the sender for each packet in such a way that (a) every packet is guaranteed

to be sent by one and only one sender, and (b) startup delay at the receiver is minimized. Before discussing
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Fig. 2. High level description of distributed streaming framework.

the rate allocation and packet partition algorithms in detail, we state their objectives: The goal of the rate

allocation algorithm is to determine how to split the total rate S between M senders in order to minimize

the probability of packet loss. The goal of the packet partition algorithm is to determine which packets

should be sent by which senders in order to prevent duplicate packets and to minimize the startup delay.

II. RATE ALLOCATION ALGORITHM

In this section, we propose a rate allocation algorithm to be used as part of our distributed streaming

protocol. The rate allocation algorithm is run at the receiver in order to determine the optimal streaming

rate for each sender. We show that our optimal rate allocation scheme for distributed streaming significantly

reduces the packet loss as compared to single route streaming. Before describing the rate allocation algorithm

in detail, we argue intuitively as to why splitting packets across routes can reduce packet loss using FEC.

First, over short time scales, sending packets at higher rate during a congestion period results in larger

number of lost packets during that period than sending at a lower sending rate. Therefore, by splitting

packets appropriately across two routes and lowering the sending rates on each route, one would expect to

lower packet burst loss on each route. Second, FEC is more effective in non-bursty environments, i.e. in

absence of large number of lost packets within a FEC block. Hence, splitting packets across routes reduces

bursty packet loss, and increases the probability of successful recovery of the lost packets by FEC. Third,

assuming congestion intervals of two independent routes rarely coincide, use of FEC allows one to recover

packets lost on one route using the received packets on the other route.
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A. Optimal Rate Allocation

We model packet loss on the Internet as a simple two-state continuous Markov chain which has been

shown to approximate the packet loss behavior fairly accurately[30][31][32][33]. A two-state continuous

Markov chain with state at time t denoted by Xt with Xt ∈ {g, b}, is characterized by μg and μb where

subscript g stands for “good” and b for “bad”. μg and μb can be thought of as rates at which the chain

changes from ‘good” to “bad” state and vice versa. When the chain is in good state, the probability of packet

loss is much lower than when the chain is in bad state.

To simplify analysis, we replace the two-state continuous-time Markov chain with an equivalent two-state

discrete one. Since we are only interested at the instances when a packet is sent, the transition probabilities

for the discrete one denoted by pgg, pgb, pbb, and pbg, can be easily expressed as a function μg, μb, and τ ,

where τ is the sending interval [30]. At sending rate S = 1/τ , we obtain the following transition probability

matrix for an equivalent two-state discrete Markov chain:

⎛
⎜⎝ pgg pgb

pbg pbb

⎞
⎟⎠. With the discrete model, the

discrete time step corresponds to the event of sending a packet. The process of the discrete Markov chain

undergoing n discrete time steps is equivalent to the process of sending n packets through the network. To

further simplify analysis, we only consider the case of two senders A and B, both assumed to be sending

packets to the receiver along two routes with independent packet loss. The extension of analysis to the case

with more than two senders is straightforward.

Our goal is to find the sending rates for the two senders in order to (a) minimize the probability of

irrecoverable loss for a fixed level of FEC, and (b) to ensure that each sender sends packets only at available

bandwidth so as not to compete unfairly with existing TCP traffic. To formally state our rate allocation

problem, we use the notation in Table I. The rate allocation problem can now be stated as follows:

Given S, N , K, Bm, (μm
g , μm

b ), we want to find Nm for m ∈ {A,B} so as to minimize the probability of

irrecoverable loss given by

C(K,N0, N1) =
NA+NB∑

j=N−K+1

j∑
i=0

P (A, i,NA)P (B, j − i,NB) (1)



8N Total number of packets in a FEC block
K Number of data packets in a FEC block
Bm Estimated available bandwidth for sender m in packets per second
(μm

g , μm
b ) Network parameters for route between sender m and the receiver

S Aggregate bit rate of video and FEC in packets per second
λ = N

S
Interval between successive transmitted FEC blocks in seconds

Nm Number of packets transmitted by sender m during λ seconds

TABLE I

Notations for rate allocation algorithm.

subject to

NA + NB = N , NA

λ ≤ BA, NB

λ ≤ BB (2)

where P (m, i,Nm) denotes the probability that i packets are lost out of the Nm packets sent by sender m, and

C(K,NA, NB) denotes the probability that more than N−K packets are lost out of a total NA+NB packets

sent by both senders. Since we assume independent packet loss along the two routes, the probability of j lost

packets out of NA + NB packets sent by both senders can be written as
∑j

i=0 P (A, i,NA)P (B, j − i,NB).

Therefore, the probability of more than N −K lost packets out of NA +NB packets sent by both senders, or

equivalently the irrecoverable loss probability, is
∑NA+NB

j=N−K+1

∑j
i=0 P (A, i,NA)P (B, j−i,NB). As indicated

in inequality constraints (2), Nm

λ is the sending rate of sender m, which is required to be less than or equal

to the available bandwidth. Since the sum of the sending rates equals to the required sending rate for the

video, we have NA + NB = N . In this paper, we assume that sum of the available bandwidth of all senders

is always greater than or equal to the video bit rate.

The procedure to compute the P (m, i,Nm) is shown in the Appendix. Using P (m, i,Nm), we search

over all possible values of NA and NB such that the constraints (2) are satisfied, and C(K,NA, NB), the

probability of irrecoverable packet loss is minimized. This search is fast since for the case of two senders,

only N comparisons are required. For M senders, the straightforward exhaustive search has complexity

O(NM−1). This could indeed be problematic for large values of N and M . However, we believe that from

an implementation point of view, having more than 10 connections results in too large of an overhead, and

makes the coordination of the senders too difficult for distributed streaming to be feasible in practice.
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III. PACKET PARTITION ALGORITHM

A. Basic Description of PPA

In this section, we address the issue of packet selection for each sender. As described in Section I-C,

after receiving the control packet from the receiver, each sender immediately decides the next packet in the

video stream to be sent, using the packet partition algorithm (PPA). All the senders simultaneously run this

algorithm in a distributed fashion in order to ensure that, all packets are sent by one and only one sender,

and also to minimize the startup delay.

To show the advantages of our proposed PPA over other PPAs, we first briefly describe a PPA in peer-to-

peer file sharing systems such as Kazaa. Kazaa file sharing system allows a single member to download a

media file simultaneously from multiple participating members. To decide which packets to be sent by which

sender, each sender is assigned to send a contiguous block of data of length proportional to its sending rate.

For example, suppose there are two senders, the allowable sending rates for the first and second senders

are 100 and 80 packets per second respectively, and total playback rate is 180 packets per second. In this

case, the first sender is assigned to send the first 100 packets and the second sender, the next 80 packets.

Therefore, the receiver has to wait until the entire 180 packets are received before attempting to playback

since its playback rate is larger than the sending rate of the first sender. Even though, this strategy avoids

duplicating packets between senders, it incurs unnecessary startup delay.

The main objective of our PPA is to ensure that the received packets arrive in an interleaved fashion

from multiple senders, so as to reduce the startup delay. The algorithm can be described as follows. Each

sender receives a control packet from the receiver through a reliable protocol at the beginning of a session

or whenever the receiver determines there should be a change in any of the sending rates. The control

packet contains two-byte fields S(1)-S(5) to specify the sending rate in packets per second for each sender,

and one-byte fields D(1)-D(5)1 for the estimated delay from each sender to the receiver in multiples of 2

milliseconds. The quantized value of 2 milliseconds is chosen to specify up to 512 milliseconds using only

1For simplicity, here we assume the total number of senders not to exceed 5. In practice any number of senders can be deployed

as deemed feasible.
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one byte, and at the same time, is accurate enough for most practical purposes. The control packet also

contains Sync number which is used as the starting sequence number that all senders use in the PPA to

determine the next packet to send, immediately upon receiving the control packet. Note that here, we only

list the essential information in the control packet in order to describe our packet partition algorithm in a

broad sense.

To describe the PPA in detail, we use the notation in Table II. If the reference time, Tk′ = 0, is

k
′

Sequence number Sync in the control packet which all senders use to initialize the PPA
Tk

′ Time at which control packet with sequence number sync k
′

is sent by the receiver
N Number of senders
Pk

′ (k) Playback time for kth packet with respect to Tk′
S(j) Sending rate for sender j
σ(j) Sending interval between packets for sender j

nj,k,k
′ Number of packets already sent by sender j since packet k

′
, and up to packet k

D(j) Estimated delay from the sender j to the receiver

TABLE II

Notations for packet partition algorithm.

conceptually chosen to be the departure time of the control packet from the receiver, the estimated arrival

time of the kth packet sent by sender j is nj,k,k′σ(j)+ 2D(j). This is because it takes D(j) for the control

packet to arrive at the sender j, nj,k,k′σ(j) for the kth packet to be sent by sender j, and D(j) for it to

arrive at the receiver. Since Pk′ (k) is the playback time of the kth packet with respect to Tk′ , the expression

Ak′ (j, k) = Pk′ (k) − [nj,k,k′σ(j) + 2D(j)] can be interpreted as the estimated time difference between

arrival and playback time of the kth packet, if sender j is its originator.

The basic idea in our packet partition algorithm is that among all senders j = 1, ...N , the one that

maximizes Ak′ (j, k) is assigned to send kth packet. Specifically, each sender computes Ak′ (j, k) for each

packet k, for itself, and all other senders, and only sends k th packet if it discovers that Ak′ (j, k) is at a

maximum for itself. If Ak′ (i, k) is not at a maximum for sender i, it will increase k by one, and repeats the

procedure until it finds the packet for which is at a maximum among all other senders. Note that if Ak′ (j, k)

is positive, kth packet is on time, otherwise, kth packet is late. In a way, by assigning sender j to send the

kth packet with maximum Ak′ (j, k), we minimize the probability of kth packet being late.
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Fig. 3. Illustration of packet partition algorithm.

Each sender effectively keeps track of all the values of Ak′ (j, k) for all N senders, and updates every

time a packet is sent. The values evolve in the same way at all senders even though they are computed at

different locations. The reasons for this are that all the senders (a) receive the same control packet from

the receiver, (b) only use the information in the control packet to update and (c) use the same equation to

do so. Therefore, even though the actual delays from senders to the receiver might be different from what

is reported in the control packet, as long as, all senders use the same information contained in the control

packet, they all arrive at the same decision as to who sends what. There is also no need to synchronize all

the senders’clocks to a global time, although they need to have more or less similar speed to prevent drift

among senders.

To illustrate the algorithm, we show a simple example in which, there are two senders, each sending

packets at same rate. As shown in Figure 3, the Sync sequence number is 10. The top line with vertical

bars denotes the playback time for the packets. The middle and the bottom lines indicate the time to send

packets for senders 1 and 2, respectively. In this scenario, packet 10 will be sent by sender 1 since the

estimated difference between playback and its receive time for packet 10 is greater than that of sender 2.

Next, packet 11 will be sent by sender 2 for the same reason.

In our implementation of a reliable protocol for the control packets, a batch of 5 identical control packets

are sent with 5 milliseconds spacing between them whenever the receiver determines there should be a

change in sending rates. Unlike TCP, our reliable protocol for control packets does not employ rate control

or congestion avoidance mechanisms since the control packets are sent infrequently. If none of the control
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packets are acknowledged within two round-trip times from a particular sender, a new batch of control

packets are sent to all the senders until the control packets are acknowledged by all senders. The interval

of 5 milliseconds between the control packets is chosen in order to reduce potential loss of all 5 control

packets due to burst loss, while ensuring that the control packets do not arrive at one particular sender too

late. This value does not affect the overall performance of the system since in practice control packets are

sent infrequently, e.g. on the order of once every several minutes, and the overall loss probability of all

control packets is very small. Due to infrequent sending of control packets, our distributed protocol does

not address the congestion control on a short time scale.

B. Practical Considerations with Packet Partition Algorithm

A practical consideration is the choice of the synchronization sequence number, k ′, in the control packet

to signal new sending rates. In choosing k ′, one has to keep two objectives in mind. First the lag among

the senders needs to be as little as possible so that received packets are in order as much as possible, thus

minimizing required receiver buffer size. Second, we need to ensure that during rate transition, the aggregate

bit rate for all senders remains constant, at the video rate, S, so as there is no or little buffer drainage at

the receiver.

As an example, consider two sender scenario shown in Figure 4. The already sent packets by either sender

are denoted by crosses, and the packets to be sent by circles. Suppose the receiver sends out control packets

which arrive at sender one before sender two. This could be due to RTT difference between the two senders.

Thus, by the time the control packet arrives, sender one’s most recently sent packet is 6, and sender two’s is

11. If k′ is chosen to be 11, then the gap between senders one and two remains at 3 packets even after the

rate change, unless sender one temporarily sends packets 8 and 10 faster. On the other hand, if k ′ is chosen

to be 8, then senders one and two, will run the PPA beginning from packet 8 in order to determine who

sends what, and packets 9 and 11 might be sent twice. This duplication results in the effective aggregate

bit rate to temporarily go below the required sending rate S. One way to deal with this is for the sender to

increase the sending rates temporarily after receiving the control packets.
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Fig. 4. Illustration of choosing synchronization sequence number.

We have chosen to set k ′ = minjk
′′(j) 2, where k′′(j) is the estimated sequence number for the latest

packet sender j has just sent, before receiving the control packet. Since the receiver knows about the last

packet received from each sender, and the round trip time between itself and each sender, it can arrive at a

fairly accurate estimate of k′′(j). In particular, a reasonable estimate of k ′′(j) is k∗(j) + 2D(j)S , where

k∗(j) is the sequence number for the last packet receiver has received from sender j, and S is the total

sending rate in packets per second. This estimate of k ′′(j) is reasonable since 2D(j)S is the approximate

number of packets sent by all senders during round trip time of sender j, i.e. during 2D(j) interval. For

k′ = minjk
′′(j), packet duplication might occur, resulting in temporarily lower aggregate bit rate than S at

the receiver. To remedy this, the receiver draws upon its buffer in order to maintain playback rate of S.

In actual Internet experiments, where we change rates on the order of once every few minutes, and RTT

difference of 40 milliseconds, we have found 500 milliseconds of buffer at the receiver to be large enough

to absorb aggregate rate fluctuation at the transition time, for streaming periods of up to 20 minutes.

IV. RESULTS

In this section, we first show the numerical results for our proposed optimal rate allocation scheme,

followed by simulations and experimental results.

2We can also choose k′ = maxjk
′′(j), the details on using both strategies are discussed in [34]



14Scenario Average good
time in seconds

Average bad
time in seconds

Packet loss
probability in the
good state

Packet loss prob-
ability in the bad
state

Average packet
loss rate p

A B A B A B A B A B
X 0.01 0.01 0.01 0.01-0.05 0 0 1 1 1% 1%- 5%
Y 5 5 0.5 0.5-2 0 0 0.2 0.2 1% 2%- 6%

TABLE III

Parameters chosen for numerical characterization in scenarios X and Y.

A. Numerical Characterization

We now present numerical results for various FEC protection levels and network characteristics using

the optimal rate allocation between two senders versus that of using one sender. In the two sender scheme,

we send packets on two “loss independent” routes A and B while in “one sender” scheme, packets are

sent only on route A. Since end-to-end packet loss characteristics on the Internet vary widely depending

on the locations of sender and receiver, we show the results for two common scenarios X and Y with

the parameters shown in Table III. Note that in both scenarios X and Y , route A has lower packet loss

rate than route B. The aggregate sending rate of both “two senders” and “one sender” scheme is 800kbps,

and the packet size is set to 500 bytes. We assume that available bandwidth for each route is greater than

800kbps in order to make a fair comparison for single route versus multiple route streaming.

Figures 5(a) and (b) show the probability of irrecoverable loss for scenarios X and Y , respectively, as

a function of average bad times of route B for three FEC protection levels: RS(30, 27), RS(30, 25), and

RS(30, 23). As the average bad time of route B increases, as expected, the irrecoverable loss probability

also increases for all three levels of FEC protection. Furthermore, a small increase in FEC protection level

from RS(30, 25) to RS(30, 23) can reduce the optimal irrecoverable probability by a large factor such as

3.

Figures 6(a) and (b) show NA, the optimal number of packets out of 30 that should be sent on route A

as a function of the average bad time of route B for scenarios X and Y , respectively. As the average bad

time of route B increases, more packets are sent on route A for all three levels of FEC protection. At the

same average bad time of route B, the number of packets sent on the route A decreases with increased FEC
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Fig. 5. Irrecoverable loss probability for various of FEC levels as a function of average bad times of route B, using

optimal partition for two senders for (a) scenario X and (b) scenario Y .

protection level. This indicates that when stronger FEC protection is employed, more packets should be sent

on the “bad” route. This is intuitively plausible by considering that in the reverse scenario in which weak

FEC protection is employed, more packets should be sent on the “good” route. Specifically, in the extreme

case where no FEC is used, no losses can be recovered by FEC, and hence, it is advantageous to primarily

rely on the “good” route.

Figures 7(a) and (b) show the ratio of irrecoverable loss probabilities between the cases when all packets

are sent on route A and when the optimal rate allocation is employed to send packets on both routes A and

B for various FEC protection levels.

As seen, the irrecoverable loss probability improves by as much as a factor of 15, depending on network

conditions and the amount of FEC. Also as expected, the curve corresponding to RS(30, 23) is above that

of RS(30, 25) which in turn, is above that of RS(30, 27). This indicates that the optimal rate allocation

scheme is more effective with stronger FEC protection. Also, The above results show that using multiple

senders can reduce the irrecoverable packet loss over that of single sender in two typical loss scenarios in

the Internet. We should also emphasize that our framework for dividing the rates among senders to reduce

irrecoverable packet loss is also applicable to other “bursty” network models which do not necessarily follow

the exact “two-state” Markov model.
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and (b) scenario Y ; NA denotes the number of packets per 30 sent on route A.
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Fig. 7. Irrecoverable loss probability ratio of sending all packets using one sender to that of using two senders as a

function of average bad times of route B for scenarios (a) X and (b) Y .

B. Sensitivity Analysis of Optimal Sending Rate

In this section, we analyze the sensitivity of loss probability to deviations from optimal sending rates,

arising from inaccuracies in route parameter estimation, or the limitation of the system to rapidly react to the

changing network conditions. Figure 8(a) shows the irrecoverable probabilities for various rate allocations

between two senders, when routes A and B have identical average good times at 1 second, and the average

bad time of route A and B are at 10 and 20 milliseconds, respectively. The optimal sending rate for each

FEC protection level is at the minimum of each corresponding curve. Assuming inaccurate estimation of

average bad time of route B as shown in the parentheses, resulting sending rates on the x-axis vary around
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Fig. 8. (a) Irrecoverable probability as the function of different partitions of sending rate between two senders; (b)

irrecoverable loss probability ratios between sending all packets on route A over 50-50 and optimal rate splits.

the optimal rate as shown in Figure 8(a). Note that the curves with stronger FEC protection levels are

more flat at the minimum than those with weaker FEC protection levels. This indicates that when strong

FEC protection is used, a slight variation in the sending rate around the optimal value results in a smaller

change in irrecoverable probability than when weaker FEC protection is used. Hence, if delay and bandwidth

requirements are satisfied, it is preferable to use stronger FEC protection level to be robust to slight deviations

from the optimal sending rate values.

To further characterize these, Figure 8(b) shows the irrecoverable loss probability ratios of sending all

packets on the better route A over the optimal and over 50-50 rate split between the routes. The average

good times of routes A and B are now set to 1 second while the average bad time of route A is set to

20 milliseconds and that of route B varies from 20 to 40 milliseconds as shown in the x-axis of Figure

8(b). As expected, the optimal rate split results in the highest ratio, hence largest gain over the single route

streaming. As seen, the 50-50 rate split also results in lower irrecoverable loss probability than sending all

packets on single route A, especially when strong FEC is employed, and route B is not substantially worse

than A. As expected, the more asymmetric the two routes become, the larger the gap between the optimal

and 50-50 splits. The actual Internet experiments in Section IV-C set further light on these results.
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C. Internet Experimental Results With Artificially Induced Packet Loss

We now demonstrate the effectiveness of optimal rate allocation scheme in reducing packet loss. Before

describing the experiments, we emphasize that the reduction of packet loss using distributed video streaming

scheme over the traditional single path scheme is attributed entirely to the rate allocation between senders,

which reduces the bursty loss, hence, increasing the error correction capability of FEC. In essence, the packet

partition algorithm provides the necessary machinery and logistics, to make the overall system, including

the rate control algorithm to function properly, and hence is not directly responsible for reducing packet

loss. Also the goals of PPA and rate allocation algorithms are different and in some sense complementary,

and hence even though the two interact with each other, they cannot be combined. Therefore, we do not

anticipate any improvements by combining the two, and examine their performance separately.

We perform the following experiments to compare traditional uni-sender streaming with distributed

streaming using multiple senders. In experiment one, we use one sender in Belgium to stream all packets to

U.C. Berkeley. In experiment two, one sender at Belgium and the other at Sweden simultaneously stream

packets to the receiver at U.C. Berkeley. In both experiments, we use RS(60, 46) with packet size of 500

bytes, and set the total sending rate to 200 packets per second, i.e. 800 kbps. In both experiments, we

artificially induce packet loss at the senders using the Markov chain model mentioned earlier; however,

other factors such as round trip time remains faithful to the characteristics of the routes. The observed

average round trip times between Belgium and U.C. Berkeley is 152 milliseconds, and that between Sweden

and U.C. Berkeley is 199 milliseconds. Throughout the experiments, we assume that 800kbps bandwidth is

available at all times for a single sender to stream the packets.

For both experiments, initially, the average good and bad times of both connections are set at 1 and 0.02

seconds, respectively, and the packet loss probability in bad state is set to p = 1. These parameters result in

an average packet loss rate of 2%. During the first 200 seconds in experiment one, all packets are sent using

only Belgium sender, resulting in 8 irrecoverable loss events as indicated by the number of circles above

and to the left of the horizontal and vertical lines in Figure 9(a). During the first 200 seconds in experiment

two, sending rates are split equally between Belgium and Sweden senders, resulting in no irrecoverable loss
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events as seen in Figure 9(b). This is due to the reduction in burst loss by sending packets at lower rates

on both routes, and hence, the increased error correction capability of FEC. From t = 200s to t = 600s, we

increase the average bad time of Belgium connection to 0.04 seconds, resulting in 66 irrecoverable losses

for experiment one. On the other hand, for experiment two, there are only 6 irrecoverable losses during

t = 200s to t = 400s where sending rates are still split equally. This indicates that splitting sending rates

between senders sup-optimally, can still provide some degree of robustness to sudden change for the worse

in network characteristics.

Further reduction in packet loss can be achieved by sending packets at the optimal rates. In particular, for

experiment two, during the period from 400 to 600 seconds, the Belgium and Sweden senders adjust their

sending rates to optimal levels, i.e. 60 and 140 packets per second for Belgium and Sweden, respectively.

During this period, there is no irrecoverable loss events as shown in Figure 9(b). This suggests that if accurate

network parameters are available, then sending packets at the optimal rates results in further packet loss

reduction as compared to dividing packets roughly evenly especially as the loss difference between the two

routes widens. Figure 9(c) shows the throughputs of two senders in experiment two. As seen, the variation

in throughputs is mainly due to packet loss. In particular, we have found the throughput dips of Belgium

connection during the period from t = 200s to t = 400s to be on average larger than that of Sweden sender

due to higher number of lost packets for Belgium sender during this period 3. From t = 400s to t = 600s,

since the sending rate of Belgium sender reduces to 60 packets per second, these throughput dips become

smaller than before, providing FEC a better chance to recover the lost packets.

Next, we show the results of our packet partition algorithm for the same distributed streaming experiments.

As discussed previously, the goal of the packet partition algorithm is for senders to send packets in an

interleaved fashion such that that (a) packets are not duplicated and (b) arrive at the receiver more or less

in playback order. During this experiment, the control packets are sent twice, once at the beginning, and the

other at t = 400s in order to change the sending rates. We have observed no duplicate packets for the first

400 seconds. Immediately after the rate change, only one duplicate packet is observed at Sweden sender.

3This is best seen on the color printout of this plot.
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However, in other experiments, depending on the accuracy of the round trip time estimates, the number of

duplicate packets ranges from 0 to 3.

To show how closely interleaved packets are received, Figure 9(d) shows the difference in sequence

number between two consecutive received packets. As seen, majority of the packets are no further than

five packets apart. Some are as far as 17 packets apart, and can be attributed to burst losses occurring

simultaneously for short periods of time on both routes. It is interesting to note the distinct lines rather than

random patterns formed by the circles due to random network jitter. Upon close inspection of the trace file,

we observe there is little network jitter. Ideally, without network jitter and with accurate estimates of the

round trip times, the plot should show one horizontal line starting at one. However, since we use only one

packet to probe for round trip time at the beginning, initially there is a slight inaccuracy in the estimated

round trip time. Therefore, the first round trip time between U.C. Berkeley and Sweden is estimated at about

190 milliseconds, 9 milliseconds off the average value. This results in the line patterns appearing at other

values than 1, making one sender send packets slightly ahead of the other.

After the second control packet is sent at 400 seconds, a more accurate round trip estimate is used,

resulting in line patterns closer to 1. Also, since Sweden sender sends at higher rate, i.e. at 140 packets per

second, the packet partition algorithm assigns a larger number of consecutive packets to the Sweden sender,

and therefore, on average, the packets arrive at the receiver more or less in order. Figure 9(e) shows the

histogram of the plot in Figure 9(d). As seen, most of the packets are within 5 packets of each other. This

indicates the effectiveness of the proposed PPA to send closely interleaved packets.

D. Actual Internet Experiments

We also perform actual experiments over the Internet without artificially inducing packet loss. Rather,

we run an off-line algorithm to be described shortly to determine network parameters. In experiment three,

a sender at Purdue University streams a H.263 encoded video to a receiver at U.C. Berkeley at the rate

of 200 packets per second. In experiment four, the same video is also streamed at 200 packets per second

from a sender at Sweden to a receiver at U.C. Berkeley. In experiment five, both senders at Sweden and

Purdue University simultaneously stream the video to a receiver at U.C. Berkeley with the optimal rates of
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Variations in order of the received packets; (e) Histogram of variation in packet order.
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80 and 120 packets per second, respectively. In all three experiments, the streamed H.263 video has constant

bit rate of 720kbps and is packetized into 500 bytes packets which are then protected using RS(100, 90)

code. To compute the optimal sending rate, we estimate the network parameters for Sweden-Berkeley and

Purdue-Berkeley routes, using a Hidden Markov Model inference algorithm [35] on the traces of packets

over many hours offline 4. To capture the bursty characteristics of the network, we ignore all the single loss

events, and only use consecutive burst loss of 2 or more packets in our estimates of network parameters.

Although many single losses may change the network characteristics, we observe that in our experiments,

there are rarely multiple single losses within a FEC block, hence these losses can be recovered by FEC

most of the times. Therefore, we only consider bursty characteristics to determine the sending rates. In our

experiments, the average congestion intervals for Sweden-Berkeley and Purdue-Berkeley are estimated to be

approximately 39 and 33 milliseconds while the average good times are 6.1 and 6.9 minutes, respectively.

Figure 10 plots the number of lost packets per 100 for experiments three, four, and five denoted with

squares, circles, and crosses, respectively. The points above horizontal line represent irrecoverable loss events.

Since we are using RS(100, 90), irrecoverable loss happens when there are more than 10 lost packets per

100 sent packets. As seen, there are 5 instances of irrecoverable loss for experiments three and four where

only one sender is used to stream video to receiver. On the other hand, in experiment five where both

senders at Sweden and Purdue university stream video simultaneously to the receiver at U.C. Berkeley, all

the lost packets are successfully recovered by FEC. Note that even though the average packet loss rates for

experiments three, four, and five are 0.05%, 0.09%, and 0.08%, i.e. well below 10%, RS(100, 90) code

in experiments three and four cannot recover all the lost packets due to the bursty loss nature of Internet.

Also, we have found uni-path schemes result in 13 to 20 dB instantaneous drop in PSNR at the time of

irrecoverable loss events as compared to distributed video streaming scheme. To further show the robustness

of the distributed streaming, we perform many uni-sender and and multi-sender experiments for different

sending rates and two different levels of FEC protection: RS(60,46) and RS(60,50). The senders in the

4An online algorithm to estimate network parameters has also been developed and is discussed in detail in [34]. In particular, the

average lengths of loss runs and loss-free runs times sending interval is used as the estimates of 1/μb and 1/μg respectively.
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Fig. 10. Actual Internet experiments showing the benefits of distributed video streaming over conventional approach.

Sweden Hong Kong Irrecoverable Loss Gain over Hong Kong Gain over Sweden
RS(60,46) RS(60,50) RS(60,46) RS(60,50) RS(60,46) RS(60,50)

Rate 0 220 18 28 1 1 2.8 2.4
20 200 14 31 1.3 0.9 3.6 2.2
40 180 9 30 2 0.9 5.7 2.4
60 160 5 9 3.6 3.1 10.2 7.6
80 140 7 9 2.6 3.1 7.2 7.6
100 120 12 20 1.5 1.4 4.3 3.5
220 0 51 69 0.4 0.4 1 1

TABLE IV

Irrecoverable loss reduction using two senders for various sending rates and FEC levels.

experiments are at Sweden and Hong Kong, and the receiver is at U.C. Berkeley 5. Packet size is set to 500

bytes and total sending rates is set to 220 packets per seconds. All the experiments are performed between

1 and 4 PM PT, and the duration of each experiment is set to 15 minutes. The results of these experiments

are shown in Table IV. Sending rates in packets per second are shown in columns 1 and 2. The numbers of

irrecoverable loss events are shown in columns 3 and 4, and the ratios of irrecoverable losses of multi-sender

over uni-sender are shown in columns 5 through 8.

As seen in Table IV, distributed streaming from multiple senders clearly reduces the number of irrecover-

able losses, up to 10.2 times over uni-sender streaming. Even though the average packet loss rate of Sweden

sender, i.e. 1.3%, is lower than the average loss rate of Hong Kong, i.e. 1.8%, we have empirically found

5This Sweden site is not the same as the Sweden site in experiment four. Both sites planetlab-1.it.uu.se at Sweden and

s1 803.ie.cuhk.edu.hk at Hong Kong are part of PlanetLab sites.
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the Sweden’s loss patterns to be more bursty; hence, it is advantageous to send packets at lower rate on the

Sweden route. In this scenario, if one sends all the packets on the route with lower average loss rate, namely

Sweden route, the number of irrecoverable loss is even larger than sending all the packets on the route with

larger loss rate, namely Hong Kong route. This indicates that when appropriate amount of FEC is used, the

lower average loss rate of a particular route is not necessarily a good indicator for sending packets at higher

rate on that route, rather the burstiness loss patterns should be taken into account for setting the sending

rates between routes.

Results in Table IV further verify our earlier numerical results in Section IV-B regarding graceful

degradation of irrecoverable loss as we deviate from optimal partition of the packets between the two routes.

Specifically, while the number of irrecoverable loss events is at its minimum for 60/160 split, deviation

to 40/180 or 80/140 results in slight increase in irrecoverable loss events. This suggests that in a highly

dynamic environment where network parameters change frequently, and therefore, it is hard to estimate

them accurately, splitting packets sup-optimally between the senders may still provide advantages of uni-

route streaming, even though optimal partitioning always results in best performance. Therefore, if enough

FEC is used, control packets could be sent infrequently to avoid frequent adaptation to “noise” to achieve

reasonable performance.

V. EXTENSIONS AND MODIFICATIONS TO THE CURRENT SYSTEM

In this paper, we have not addressed the issue of changing FEC levels during the session. This may

be necessary when channel conditions for all senders get worse, and the redistribution of bit rates among

senders is not sufficient to keep the irrecoverable loss probability at sufficiently low levels. If the video

bit rate is fixed, this approach requires that the additional available bandwidth to exist for larger amount

of FEC. Otherwise, reduced scalable video bitstream might be used to compensate for additional FEC.

Assuming either approach, the receiver can run the rate allocation algorithm for the new amount of FEC,

and send the control packets consisting the new FEC information to the senders. This approach however

assumes that the senders can all either compute new levels of FEC on the fly, or have pre-stored redundant

packets corresponding to different FEC levels ahead of time. In our current framework, we only consider the
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possibility of changing the sending rates among a fixed set of senders. It is possible to extend our system so

that the receiver can dynamically request new senders in order to provide additional bandwidth as required.

VI. CONCLUSIONS

In this paper, we proposed a distributed video streaming framework using a receiver-driven protocol for

simultaneous video streaming from multiple senders to a single receiver in order to achieve higher throughput,

and to increase tolerance to packet loss due to network congestion. The receiver-driven protocol employs

a rate allocation algorithm and a packet partition algorithm. The rate allocation algorithm determines the

sending rate for each sender taking in account available network bandwidth, the given amount of FEC,

and channel characteristics in order to minimize the probability of packet loss in bursty loss environments.

The packet partition algorithm ensures no senders send the same packets, and at the same time, minimizes

the startup delay. Our experimental results demonstrate the effectiveness of distributed video streaming

framework in reducing overall packet loss rate. Future work involves investigating robustness of PPA under

large network jitter, and inaccuracies in parameter estimation. We also plan to test the overall system under

a wider range of parameters, and more realistic network conditions such as heavy traffic load.
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APPENDIX

Procedure for computing P (m,k,Nm)
To compute C(K, N0, N1) in Section II-A, we first compute P (m, i, Nm) based on the given network parameters

(μm
g , μm

b ) of sender m as follows. We use notations in Table V: Note that pm
ij depends not only on the parameters

μm
g and μm

b , the rates at which the state of sender m changes from “good” to “bad” and vice versa, but also on the
rate that sender m sends. Then,

φm
ij (k, n) Δ= Prob(Lm(n) = k, Sm(n) = j|Sm(0) = i)

denotes the probability that sender m is in state j, and there are k lost packets after it sends n packets, given that it
is initially in state i. We can compute φm

ij (k, n) recursively by conditioning on the previous state l, and by using the
total probability theorem to obtain

φm
ij (k, n) =

∑
l∈g,b

[φm
il (k − 1, n − 1)pm

lj P loss
m (j) + φm

il (k, n − 1)pm
lj (1 − P loss

m (j))]



27Sm(n) ∈ {g, b} State of sender m after it sends n packets
Lm(n) Number of lost packets out of n packets sent by sender m
P loss

m (i) Packet loss probability when sender m is in state i
pm

ij Transition probability from state i to state j for sender m

TABLE V

Notations for computing P (m,kNm).

for all k ≥ 0 and n ≥ 0, with the boundary conditions:

φm
ij (0, 0) =

{
1 if i = j
0 if i �= j

φm
ij (k, n) = 0 for n < k

The above boundary conditions hold because of following arguments. If sender m does not send packet and hence
does not change its state, there will certainly be no lost packets. Therefore φm

ij (0, 0) = 1 for i = j. On the other hand,
by definition, it is impossible to have sender m change its state without sending a packet, hence φ m

ij (0, 0) = 0 for
i �= j. Finally, φm

ij (k, n) = 0 for n < k since number of lost packets cannot exceed the number of sent packets. Now,
since P (m, k, Nm) is the probability of k lost packets out of Nm packets sent by sender m, regardless of the initial
and final states, we marginalize φm

i,j(k, Nm) to obtain

P (m, k, Nm) =
∑

i∈{g,b}

∑
j∈{g,b}

πm
i φm

ij (k, Nm)

where πm
g = μm

b /(μm
g +μm

b ) and πm
b = μm

g /(μm
g +μm

b ) are the steady-state probabilities of sender m being in “good”
and “bad” states, respectively.


