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Abstract—Conventional Quality of Service (QoS) for multime-
dia networking applications are typically specified by a certain
set of requirements on latency, jitter, bandwidth, and packet
loss rate. In this paper, we introduce a novel approach to QoS
via the notion of distribution shaping in which a pre-specified
distribution of packets in a queue is achieved via queuing policies.
In a way, the distribution-based QoS is more general since the
distribution of packets in the queue captures all the statistical
information regarding the throughput, latency, delay jitter, and
packet loss rate. We present a convex optimization framework
for obtaining the optimal queueing policy that drives any initial
distribution of packets in the queue to the desired distribution
in the fastest time. We then augment the proposed framework
to obtain a queueing policy that produces c-approximation
to the target distribution with even faster convergence time.
The augmented framework is useful in dynamic settings where
traffic statistics change frequently, and thus fast adaptation is
preferable. Both simulation and theoretical results are provided
to verify our approach.

I. INTRODUCTION

Guaranteeing end-to-end Quality of Service (QoS) for mul-
timedia applications over a best-effort network such as the
Internet is challenging. The difficulty is due to a number of
factors including the time-varying nature of Internet traffic as
well as the heterogeneity of network architectures and policies
across different autonomous domains (AS). A major effort has
been focused on DiffServ architecture [1] in which packets
of different flows are classified and marked at the ingress
routers. The markings are then used by the intermediate routers
to determine their forwarding/queueing policies. For example,
packets with Expedited Forwarding (EF) marking are intended
for flows/applications with low-loss, low-latency such as video
conference traffic. The intermediate routers then implement
certain queuing policies that ensure the EF packets have higher
forwarding priority than other best effort packets. In a way, this
is an attempt to provide scalable end-to-end QoS by enforcing
differentiated service of flows on a per-hop behavior basis.

Achieving QoS via enforcing per-hop behavior for a flow
is also a common approach in wireless networks to map the
end-to-end QoS requirements into packet transmission policies
at each hop. For example, in a local wireless area network
(WLAN), using the MAC protocol 802.11e in the Enhanced
Distributed Channel Access (EDCA) mode [2], packets are
classified into different types: Background (AC_BK), Best Ef-
fort (AC_BE), Video (AC_VI), Voice (AC_VO). The minimum
and maximum contention window (CWmin, CWmax) and
Arbitration Inter-Frame Space (AIFS) are primary parameters
to control the priorities for different packet types. A flow using

small contention windows and AIFS will have higher chance to
access the wireless medium. For example, CWmax for best-
effort packets is set to 1023 while it is set to 32 for video
packets.

Another approach to provisioning flows of different priori-
ties is to employ multiple physical or virtual queues at a router.
Each queue consists of packets of the same type. A queueing
policy is used at each transmission opportunity, to decide
which of the queues whose a packet should be transmitted.
A simple fair queuing policy will transmit packets from each
non-empty queue in a round robin fashion [3]. On the other
hand, a priority or weighted queueing policy give preference
for transmitting packets from higher priority queues [4].

All the aforementioned techniques aim to achieve QoS
under resource constraints. These queueing policies are often
not designed to provide statistical guarantee for bounding
the maximum packet delay or loss. Rather, they are used to
provide differentiated services among the flows. Under well-
specified network traffic conditions, it is possible to derive
the average and variance of packet latencies and loss rates
for different flows when a particular queuing policy is used.
Although these queuing polices are primarily heuristic driven.
That said, queuing policy plays a critical role in providing
QoS.

Contribution. As discussed, queuing policies play a critical
role in providing QoS for multimedia applications. Thus,
in this paper, we introduce a novel approach to QoS via
the notion of distribution shaping in which a pre-specified
distribution of packets in a queue is achieved via appropriate
queuing policies. In a way, the distribution-based QoS is more
general and precise than the previous approaches since the
distribution of packets in the queue captures all the statistical
information regarding the throughput, latency, delay jitter,
and packet loss rate. In particular, given a distribution it is
theoretically possible to compute its moments of any order.
We present a convex optimization framework for obtaining
the optimal queueing policy that drives any initial distribution
of packets in the queue to the target distribution in the fastest
time. While there are many queueing policies that can produce
the target distribution, the fastest policy is preferable since it
allows fast adaptation to time-varying network traffic. We then
extend the proposed framework for finding a queueing policy
that produces e-approximation to the given target distribution
with even faster convergence time. This extended framework
allows for a trade-off between how close the obtained policy
to the desired policy and how fast it can be obtained, which



can be useful in fast changing network environments.

Our paper is organized as follows. In Section II, we discuss
the approach to QoS via distribution shaping. In Section III,
we provide necessary mathematical notations and background.
Section IV is devoted to convex optimization formulation for
finding the optimal policy and some theoretical results. We
present simulation results for the proposed approach in Section
V. Finally, we provide a few concluding remarks in Section
VI

II. ACHIEVING QOS VIA DISTRIBUTION SHAPING

A Simple Example. We first illustrate the distribution-based
approach to QoS with an example of a time-discrete version of
the classical M/M/1/k queueing model. In this time-discrete
model, time is divided into time steps of equal duration. At the
beginning of each time step, exactly one packet arrives at the
queue with probability p = 0.4. Otherwise, with probability
1 — p = 0.6, no packet arrives during that entire time step.
Assume a queueing policy is used such that at the beginning of
each time step, exactly one packet is dequeued with probability
q = 0.6. Otherwise, with probability 1 — ¢ = 0.4, no packet is
dequeued during that entire time step. Furthermore, let k = 2
be the maximum queue size, and a newly arrived packet is
dropped if the queue is full. The dynamic of the number of
packets in the queue can be shown to be governed by the
following transition probability matrix:
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where P;; denotes the probability that the queue will have
7 packets in the next time step, given that it currently has ¢
packets with 7, j € {0, 1, 2}. For each aperiodic and irreducible
P, there exists a unique corresponding stationary distribution
7 such that 77 P = 7. In this particular case,
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The stationary distribution 7 characterizes the long term or
stationary probability of the queue occupancy. In this case,
out of all the observed time slots, 61% of time the queue is
empty, 27% of the time the queue has exactly one packet,
and 12% of the time the queue has two packets. Knowing
exactly this distribution, the average queuing delay can be
precisely calculated. One can also immediately bound the
probability of dropped packets to no more than 0.12. In fact,
any statistical measure, e.g., moments of any order can be
theoretically calculated for a given distribution.

Transition Probability is induced by Queuing Policy.
Suppose the QoS requirements are given in terms of maximum
average packet latency and minimum packet drop rate, then
one can find a stationary distribution 7 that satisfies such
requirements. However, there are many transition probability
matrices P that have the same stationary distribution 7. It
is important to note that each transition probability P is a

result of applying a certain queuing policy. For the example
above, the associated queueing policy is to send packets with
probability of 0.6. One can easily implement another policy
that sends packets with a different probability which results
in a different transition probability. Moreover, we need not
restrict ourselves to the class of policies that sends packets
with a fixed probability. Rather, one can design a policy that
sends packets with different probabilities based on the number
of packets presently in the queue.

Constraints on Queuing Policy. Intuitively, for a high
priority flow m = [1,0,0]7 seems to be the best stationary
distribution since the queue is always empty. However, this
implies that a packet is always dequeued at every time slot.
This policy might not be possible or optimal due to several
reasons. For example, let us consider a wireless network
consisting of multiple nodes. First, if an application does not
require much throughput, then sending packets all the time
consumes more power than necessary. Second, if every node
in the wireless network implements the same greedy queuing
policy, then collisions will happen all the time, resulting in
low overall throughput. Thus, the transition probability matrix
(hence the queuing policy) must be selected from a pre-
specified class of transition probability matrices that gives
rise to reasonable queuing policies for the given settings. This
constraint is an input to our convex optimization framework
to be described shortly.

Fastest Queuing Policy. We noted above that there are
many transition probability matrices P (equivalently many
queuing policies) that have the same given stationary distri-
bution 7, and all satisfy the pre-specified QoS requirements.
So which transition probability matrix should one choose? The
theory of Markov chain shows that if we apply the same queu-
ing policy over many time steps, the distribution of packets
in the queue will converge to a unique stationary distribution
corresponding to a stochastic, aperiodic and irreducible matrix
P, regardless of the initial distribution of packets in the queue.
Mathematically, let v be any initial distribution, then

lim vTP" =77, (1)
n—oo

where n is the number of time steps.

If the network traffic is stationary, then 7 can be obtained
approximately using the same queuing policy after some
number of time steps. Ideally, we want the queuing policy that
drives the distribution of packets in the queue to the desired
stationary distribution fastest for any initial distribution. This
is especially useful when the network conditions change and
thus fast adapting queueing policy is preferable.

Another important point about this fast adapting principle
is that if for some reason, the network traffic becomes bursty
for a short while that fill up the queue, a fast queuing policy
will drive the queue to the desired stationary distribution in
the fastest time.

A Slightly More Sophisticated Example. Let us consider
the following example of a wireless network of consisting of
three nodes running three applications with different priorities,
e.g., video, audio, and data. A queue can be used to model the
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Fig. 1. A queuing model in a wireless network
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Fig. 2. The possible states at time step ¢ + 1, given the state at time ¢ is
(3,3,3)

packet generation and processing at each node. Specifically,
packets arriving at the queue are generated by an application,
and a (de)queuing policy determines the rate at which the
packets are sent out. Furthermore, suppose three different
distributions of packets in the queues are given as QoS
requirements for these flows as shown in Fig. 1. Intuitively,
the distribution for the audio flow should be skewed toward
having high probability for smaller number of packets in the
queue in order to ensure low queuing latency for its packets.
On the other hand, the distribution for the data flow can
be less skewed since the requirement on the latency of its
packet is less stringent. In the simple single queue example
with maximum queue size k, the number of possible states
for the stationary distribution is k + 1, corresponding to the
possible number of packets in the queue. In the three queue
example, the corresponding stationary distribution 7 is now a
joint distribution of the number of packets in each queue, and
thus the number of possible states is (k + 1)3. Then, given a
queum% policyaone can obtain the transition probability matrix

P17 x(k+1)" that specifies the state of all three queues
simultaneously.

It is convenient to represent the dynamics of packets in the
multiple queues via a walk on a graph. Fig. 2 depicts the state
transition using a graph. If at time step ¢, the system state is
(3,3,3), corresponding to the number of packets in each queue
is 3, then at time step (i+ 1), the system can be in six possible
states with different probabilities. This is due to the fact that
the number of packets in each node (queue) can only increase
or decrease by exactly one, or stays the same.

In general, for any system of m queues in a wireless
network, the system dynamics can be represented by a finite
undirected connected graph G(V, E) with V and F denoting a

set of vertices (set of states) and set of edges (transition prob-
ability), respectively. A weighted edge between two vertices
v; and v; represents a non-zero probability for the system
to transition from state ¢ to state j in one time step with
appropriate queueing policy. A multiple-queue system can thus
be viewed as a random walk on weighted graph G = (V, E).
This walk forms a reversible Markov chain which is important
in our later discussion.

Our framework. For a given setting, e.g., m queues in
a wireless network, one can always immediate write down
the structure of the corresponding graph. For a given queuing
policy and network condition (SNR), we can also compute
the weights on the edge of the graph which corresponds to
the transition probability matrix P. For a given transition
probability matrix P, a stationary distribution 7 can be found.

Our first problem is how to find a queueing policy that drives
the system to a pre-specified target stationary distribution
7w in the fastest time. More generally, given a graph with
its connectivity, how to put the weights on the graph, i.e.,
transition probability matrix P, so that the corresponding walk
on that graph will reach the desired stationary distribution
quickly. Our second problem is that rather than finding a
queueing policy that is guaranteed to drive the system to the
target stationary distribution, we find a queueing policy that
drives the system e-close to the target stationary distribution
in much faster time.

Our paper is focused on finding the transition probability
P within a set of specified class of transition probabilities,
specifically tridiagonal matrices. This restriction is imposed by
the real-world constraints on the possible queuing policies as
discussed previously. We note that having P, on can then find
the queuing policy appropriately. For example, in the single
queue example, knowing the entries of the matrix P and the
network environments (p), the queuing policy, i.e., sending
rate (q) can be obtained without much difficulty. Next, we will
present the necessary background for formulating and solving
the proposed problems.

III. MATHEMATICAL NOTATIONS AND PRELIMINARIES

In this section, we provide notations, definitions, and a few
well-known results to be used in our convex optimization
framework.

Proposition 1: For an irreducible, aperiodic, finite and dis-
crete Markov chain with a transition probability matrix P,
there exists a unique stationary distribution 7 such that

lim vTP" =77, )
n—oo

Definition 2 (Total variation distance): For any two proba-
bility distributions v and 7 on a finite state space €2, we define
the total variation distance as:

1 . .
e PZOEEIOIR
i€Q
Total variance is the common metric to measure the distance
between two probability distributions.



Definition 3 (Mixing time): For a discrete, aperiodic and
irreducible Markov chain with transition probability P and
stationary distribution 7, given an € > 0, the mixing time
tiniz(€) is defined as

tmiz(€) = inf{n:[[vTP" —aT|ry < e, for all

probability distributions v} .

The mixing time of a Markov chain measures the time needed
for the Markov chain to converge to within an e of its
stationary distribution. The notion of mixing time is critical
to our framework to characterize the convergence rate of a
queuing policy.

A non-zero vector v; is called a right (left) eigenvector of a
square matrix P if there is a scalar \; such that: Pv; = \;v;
or (vl P = \vl). The scalar ); is said to be an eigenvalue of
P. If P is a stochastic matrix, then |\;| < 1,Vi.

Denote the set of eigenvalues in non-increasing order:

L=M(P) 2 A(P) = = Ng|(P) = -1

Definition 4 (Second largest eigenvalue modulus): The
second largest eigenvalue modulus (SLEM) of a matrix P is
defined as:

u(P) =

Definition 5 (Reversible Markov Chain): A discrete
Markov chain with a transition probability P is said to be
reversible if

max

max  [Xi(P)] = max{2(P), Ao (P)} ()

Pijm(i) = Py (j) 4)

Theorem 1 (Bound on mixing time): [5]. Let P be the tran-
sition matrix of a reversible, irreducible and aperiodic Markov
chain with state space 2, and let T, := mingeqn(z). Then

tmia: (6) (5)

1 1

S 1- N(P) log (eﬁm,in).
Theorem 1 shows that a transition matrix P with a smaller
w(P) would have faster convergence rate to the stationary
distribution. It is not difficult to see that from Theorem 1,
the error e reduces over time at a rate of no greater than
w. Thus, finding the matrix P with minimum u(P)
would Tesult in the fastest convergence time which will be the
topic in the next section.

IV. CONVEX OPTIMIZATION FORMULATION

It was shown in [6] that

w(P) = ||[DY2PD M — \/w(v/m)" |2, (6)

where 7 denotes the stationary distribution of P, D,. denotes
the square diagonal matrix whose diagonal entries are taken
from each elements of 7, and ||.|| denote l5-induced matrix
norm. Furthermore, p(P) is a convex function in P.

For a queueing system, the corresponding transition proba-
bility matrix is tridiagonal since the number of packets in the
queue can only increase, decrease, or remain the same in the
next time step. Also, all tridiagonal matrices are reversible.
Therefore, our first convex optimization is: Given the QoS

requirements, i.e., a desired stationary distribution of packets
in the queue, find the fastest queuing policy (P) that drives
the queue from any state to the desired stationary distribution.
It was first formulated broadly in [6] as:

Problem 1.
Minimi 1/2 —1/2 " T
inimize ||D,."PD_."" — /7 (/7)1 |2
Pl1=1 7
Subject to : D.+P=PTD,.

other convex constraints on P.

The objective function is SLEM. The first constraint ensures P
is a stochastic matrix. The second constraint is for reversibility.
The third constraint is imposed by limitations of certain set-
tings, e.g., interference, power consumption, etc, as discussed
in Section II. The solution of the problem (if exists) is a
transition matrix P,y,; which has the smallest SLEM, resulting
fastest convergence time to the given target distribution 7*.
However, these constraints, especially the third constraint, can
be restricted that given a stationary distribution 7*, there might
not be a P that simultaneously satisfies all the constraints and
produces the desired stationary distribution. For example, in
the single queue example, if one restricts the queuing policy
to always send packets at some constant rate (q) regardless of
how many packets in the queue, then there is less flexibility in
producing the desired 7*. In addition, in many settings, finding
a queueing policy that produces a stationary distribution that
is within some small e of the target stationary distribution,
but has faster convergence time might be preferable. This is
especially useful when network conditions changes quickly.
On the other hand, a slow adapting queueing policy is optimal
for the past rather than the present network conditions. Based
on this, we propose the following optimization problem (P2):
Problem 2.

Minimize || Dy *PD;? — \/a(y7)T||2

Pl1=1

D.P=PTD, 3
other convex constraints on P.

|m* =7l < e

Subject to :

The optimization variables in (P2) are both P and 7.
Unfortunately, (P2) is non-convex as evident by the constraint
||7* — «|| < e. Therefore, we propose the following convex
problem (P3) to find the approximate solution for (P2).

Problem 3.

Minimize ||DX2PDM? — /oo (V)T ||
Pl1=1

|77« P — 71|, <6

Other convex constraints on P.

9
Subject to : ©

Unlike (P2), P is the only optimization variable in (P3). It
is not difficult to see that (P3) is convex. One issue to consider
is how to pick J in the constraint ||77 % P —7*||2 < §, so that
the solution to (P3) indeed satisfies all the constraints in (P2).
Specifically, we want to determine the bound on the value of



0 to guarantee that the constraint ||7* — 7|| < € in problem

(P2) is satisfied. We have the following proposition.
Proposition 6: For any irreducible aperiodic reversible P,

we have:

e ||IT* P — 7|2

VR

min

|7 — 7|2 < (10)

Proof: See appendix. ]
From Proposition 6, it is straightforward to see that if we pick
6 > €\/7min(1 — Ag) , then [|[7* — 7|[z < e On the other
hand, we cannot possibly know m,;n, Tmaz, and Ao without
knowing P first. However, one often can put upper and lower
bounds on these quantities by looking the structure of the class
of the transition matrix. For example, one can bound A, via the
conductance obtained by examining the corresponding graph
G(V, E) [5]. Specifically, we have the following results on
the upper and lower bounds of the quantities above for a class
of tridiagonal transition probability matrices that represents a
class of queueing policies.

Proposition 7: Let P be a tridiagonal matrix with o <
P; < B;(0 < a < P) for all (4,7) in the off-diagonal line,
we have

Tmin Z a|Q‘71
7Tma:b S ﬁ
Ay <1 —2a/¢

Proof: We omit the proof due to limited space. [ |
Using Proposition 7, it is not difficult to obtain the following
corollary for selecting the right § based on e.

Corollary 1: For the class of tridiagonal matrices defined
in Proposition 7, pick § = em(sflﬁ# will guarantee that

[|7" —7l]a <€ (11)
We are ready to show the main result on bounding the optimal
objective value of problem (P2) with that of problem (P3). We
have the following proposition:

Proposition 8: Let the puo and ps be the optimal objective
values of problems (P2) and P(3), respectively. Let A =

<, 7, and 7} . denote the maximum and minimum

min

elements in 7*, respectively. Then,

pe > pz > pe — C, (12)
where
AQ2y/m5 . — A A2
¢ = ST O | (o B

(\/ Tr;;w'u - A)2 Tonin
+ QAT 0 + 34)
Proof: See Appendix. ]

Proposition 8 provides a bound on using solution to (P3) as
an approximate solution for (P2).

13)

V. SIMULATION RESULTS

In this section, we present simulation results which agree
with our intuitions and theoretical results. We use CVX [7]
to solve all our convex problems. CVX routines implement
subgradient methods for finding the optimal solutions. Since
the all the matrices under consideration are relatively small,
the time for CVX to obtain the solutions are negligible.

We assume a single discrete time queuing system in which
at most one packet arrives or departs in a single time slot. This
implies that the transition probability matrix is a tridiagonal
matrix, and therefore is reversible as shown below.

1 P1
q2 T2 P2
’ ) (14)
qQl-1 Q-1 P|Ql-1
40| afe]

To model the limitations on power consumption, inferences,
etc., we further require that: r;,p;,q; € (o, 8),Vi. (o, ) C
(0,1) are pre-specified that models certain limitations. Specif-
ically, we set (a, 8) = (0.05,0.95), the maximum queue size
|2] = 20, and § = 0.1. The given target stationary distribution
7* is shown in Fig. 3.

First, in case (a), we consider a limited class of queuing
policies where it can be modeled as a tridiagonal matrix with
the following requirement:

ri=0fori=2,...,]Q] -1

Given 7%, we solve problem (P1) to find the fastest policy
that converges to 7*. Now in case (b), we enlarge the class
of queueing policies by lifting the restriction on r; = 0.
Then, we solve problem (P1). Intuitively, the queuing policy
found in case (b) should likely to have faster convergence
time than that of case (a) since it is found from a larger class
of policies. Indeed, this is the case. Fig. 4 shows the total
variation distance between the target stationary distribution
and the current distribution as a function of time steps. As
seen, the curve for case (a) decreases slower than that of case
(b). At the time step n = 300, the total variation distance for
case (b) is almost zero while that of (a) is still around 0.08.
Hence, queuing policy in (b) is more suitable for changing
network conditions.

We now consider case (c). In this case, the class of queueing
policies is the same at that of case (b). However, we solve
problem (P3) in which, we intentionally find a queuing policy
that might not produce exactly the target stationary distribution
7, but close enough, i.e., ||r — 7*||a < e. Intuitively, this
policy should produce even faster adaptation than those of
cases (a) and (b). In fact, this is the case. Fig. 4 shows the
curve for case (¢) which drops down quickly compared with
the other two. At time n = 50, the total variation distance
is 0.1284 for case (c¢) while they are more than 0.7 for the
other two cases. The curve for case (¢) however does not
converge, i.e., decreases to zero, but stays around 0.12. This
is intuitive since the solution to problem (P3) is not designed to
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obtain a queuing policy that converges to the target stationary
distribution. It is important to point out that in a fast-changing
network environment, it is preferable to use the queuing policy
obtained by solving problem (P3) since it allows fast adaption
at the expense of a bit less accurate. Fig. 3 shows that there
are not much difference in the distribution 7 obtained by
solving problem (P3) and the target distribution 7*. Thus, the
QoS requirements would not be violated by using the queuing
policy obtained from problem (P3).

We now study the trade-off between the accuracy of ob-
taining the target distribution and the convergence time. Fig.
5 shows the mixing times from problems (P3) and (P1) which
decrease significantly when the allowable deviation (e) from

the stationary distribution increases. For the class of queuing
policies in the simulation, setting € = 0.02687 seems to be the
best as it reduces the mixing time significantly while keeping
m close to 7*.

An interesting observation. We note that the resulted
queuing polices above behave like a 802.11 protocol to some
extent. To see this, assuming a model for a simple queue as
in Section II, and the network condition is stationary, i.e., p
is fixed. Then each different entries F;; might correspond to
a different ¢;. This implies that, the optimal queuing polices
will dynamically change the sending rates based on the current
number of packets in the queue. For the 802.11 protocol, a
node will change its sending rate based on the number of
collisions. Under some settings, the number of queues in the
packets can be highly related to the number of collisions.
In short, both 802.11 and the proposed optimal queuing are
similar in the way they adapt to the network conditions.

VI. CONCLUSION

In this paper, we introduce a novel approach to designing
queueing policies that provides statistical guarantees on QoS
requirements. Specifically, the queuing policy is designed to
shape the distribution of packets in the queue to a target
distribution which captures the QoS requirements on the
throughput, latency, delay jitter, and packet loss rate. We
present a convex optimization framework for obtaining the
optimal queueing policy that drives any initial distribution
to a target distribution in the fastest time. We then show
how to extend the proposed technique to obtain a queueing
policy that produces e-approximation to the given distribution
with even faster convergence time. The former is useful in
settings whose network conditions change slowly, while the
later is appropriate for fast-changing network conditions. Both
simulation and theoretical results verify the benefits of the
proposed approach.
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APPENDIX

Proposition 6
Proof: (sketch)
We assume P has n eigenvalues {A1, Ag,..., \,} and n
left eigenvectors {v1,va,...,v,} such that: 1 = Ay > Ay >
>\, > -1



Let (f,9)r = > ,ca F09)  genote the inner product where R; is the Taylor Remainder then |R;| < WAQ.
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with respect to 7(z). Due to the reversibility of P, it can be Denote R is a vector whose entries are R; then T
shown that the set of eigenvectors {v;} forms an orthonormal 12 172
L ) D" =Dy "+ D,
basis with (.,.)1. The eigenvector corresponds to the largest ™ P
eigenvalue \; = 1 is equal to the stationary distribution: D,.""=Dz""" = Dg/r+ Dr

vy = 7. We have: We also denote:

n 1/2 —1/2
=3 (ot — w10l A= D’{gPD“l/z — VT WT)T = s = ||Al]2 as)
pa B =Dy*PD:"? — /a(ym)T = p2 = || Bl
Since vl P = Nl Then we have:
" A = (DV24+D,)P(D;Y? - D, + Dg)
T T T T s T s/m R
— P—-1)= A—1 - i) LU;
(W 7T)( ) ;( )<’/T ’/T'U>717'U —(\/E—FS)(\/?T-FS)T
_ —1/2 _ pl/2
Also. = B+ D.PD, D./*PDg/
) ) — DyPD,;, + DY?PDp + D,PDpg
(=mmoy = @ mmy — s(v/m)T — s - ssT (16)
= 75 (2) — (4 Since ||P|| = 1, using sub-multiplicative property of matrix
> (w* (i) — (i) g p property
i=1 norm each element in the right side of (16) (except B) can be
=0 bound as following:
Then ||DSPD;1/2 A K
1/9 ., - mzn
T — ||y = |Jn* — 7|5 = Z =) 17> PD, | Smaxi\fl —%
||[DsPDy/r|| < max;| 2= |— (\/7 NE
and 1/2 main
D= " PDg|| < maxs|y/mil|Ri| = (VT + A) =572
@ =a) (P =Dl = D (N =) — 7,03 |DsPDg|| < max; |si]|Ri| = =257
1:2 * 1IN -
ls(vm) T[] < 19 max; [s; (/7] —8‘)| = [Q06(VT e + D)
Therefore: I(vm)sT]] < 19 max; [si (/7] — i) = [Qo(V/Taz + A)
T _
(" =a)(P =Dl > min |1 Nl[[(x" = )|+ s < [0 man, 2] = 1012
Sum up all these elements, we now have:
= @ =2 T)(P = DIl = 1= M)ll(x" =)l AT x
T T ||A_B||SC = = A \/ maa:+2A
S @ P =)z = (1= )| =)l W”mm— Toin
" ! + [QAR/7E 0w + 3A) 17
Since for any vector x: ARV (17)
[l ] Also
A2 s > N2 min ||A|| > min ||B|| — max||A — B||
min " Tmax
F 1 have:
Then we conclude rom (15), we have
> 9 — D 18
o mly < T P =l non "
2= T2 1— Mg Clearly, solution set of (9) includes that of (8) then
man
| H3 < o (19)
Proposition 8 (17), (18) and (19) complete the proof.
Proof: (sketch) -

Denote a vector s = v/7* — /7 then |s;] < A Vi € Q
where A = —~<z— >0

min

Using Taylor series for function f(x) = Ci
in the interval z € (—A, A), we have:

1 1 1 1

VT Vmitsi VT T

si + R;



